
General Game Playing:
a Challenge for AI

Sylvain LAGRUE

lagrue@cril.fr - http://syl.lagrue.net

Université d'Artois - CRIL CNRS - France

AI4Life – 2018-05-09

http://syl.lagrue.net/

Game: De�nition

“ A game is a system in which players engage in an arti�cial con�ict,
de�ned by rules, that results in a quanti�able outcome.

— Katie Salen and Eric Zimmerman

2

Game: De�nition

“ A game is a system in which players engage in an arti�cial con�ict,
de�ned by rules, that results in a quanti�able outcome.

— Katie Salen and Eric Zimmerman

Strategy Game
Archetype of intelligent behavior for Human Being

In Strategy Games, physical abilities are not necessary: intelligence, focusing,
and knowledge prevail

2

Game: De�nition

“ A game is a system in which players engage in an arti�cial con�ict,
de�ned by rules, that results in a quanti�able outcome.

— Katie Salen and Eric Zimmerman

Strategy Game
Archetype of intelligent behavior for Human Being

In Strategy Games, physical abilities are not necessary: intelligence, focusing,
and knowledge prevail

Applications
Entertainment

Agent behavior in economics

Decision support system

Education (eg. "serious games") 2

Example of Games
With complete information: Chess, GO, Checkers, Xiangqi

Chance Games: Backgammon

With incomplete information: Poker, Bridge

Simultaneous games: Rock Paper Scissors

But also asymmetric games, cooperative games, non-zero-sum games, ...

3

AI and Games
For scientist and AI researchers

“ Chess is the Drosophila of Arti�cial Intelligence.

— Alexander Kronrod (1921-1986)

4

AI and Games
For scientist and AI researchers

“ Chess is the Drosophila of Arti�cial Intelligence.

— Alexander Kronrod (1921-1986)

Controlled environment (no physical constraints, �xed
rules, rational players,...)

Playground for experimenting many
algorithms/architectures

Technology showcase

4

AI and Games
For general public: exert fascination...

Fascination...

5

AI and Games
Timeline et milestones

1950 Article: Programming a Computer for Playing Chess

1979 BKG 9.8

1997 Deep Blue

2007 Checker Solved

2016 AlphaGo

2017 Libratus

2018 AlphaZero

6

1950: Seminal article for Chess
programming from Claude Shannon

2 algorithms for playing chess

"Type A": brute force
(adaptation of minimax)

"Type B": "�ne" selection of
interesting branches

Shannon also built an automate
that plays some endings with up
to six pieces

1951: Alan Turing proposed a
program, developed on paper, able to
play a full game of chess

Claude Shannon and the Chessmaster
Edward Laske

Programming a Computer for Playing Chess (1950)

7

Hans J. Berliner

DEC PDP-10

BKG 9.8, Hans J. Berliner (1979)
In 1979 BKG 9.8 defeated the world champion of Backgammon, Luigi Villa, by
the score of 7–1

Main idea: Using fuzzy logic for the transitions between the 3 phases of game
(opening/middle game/end game)

8

Deep Blue vs Garry Kasparov (3.5/2.5 -
2w/1w, 3 draws)

Massively parallel supercomputer
(256 dedicated CPUs)

11.4 GFlop/s

Able to evaluate 200 million
positions per second

IBM's Deep Blue beats Garry Kasparov (1997)

9

Chinook solved Checkers (2007)
Jonathan Schaeffer et al.

"Solved Checkers": after an exhaustive search, a strategy that leads to a draw
against perfect player was found

Against Marion Tinsley in 1992 (4-2 and 33 draws for Tinsley)

10

Go
Branching factor:

Checkers (8x8) = 2.8

Chess = 35

Go (19x19) = 250

11

Go
Branching factor:

Checkers (8x8) = 2.8

Chess = 35

Go (19x19) = 250

Monte Carlo Go (1992)
First use Monte Carlo Tree Search (MCTS) for Go (Bernd Brügmann)

MoGo (2008)
Introduction of UCT (Upper bound Con�dence for Tree = MCTS + UCB Upper
Con�dence Bounds)

11

Go
Branching factor:

Checkers (8x8) = 2.8

Chess = 35

Go (19x19) = 250

Monte Carlo Go (1992)
First use Monte Carlo Tree Search (MCTS) for Go (Bernd Brügmann)

MoGo (2008)
Introduction of UCT (Upper bound Con�dence for Tree = MCTS + UCB Upper
Con�dence Bounds)

Alpha Go (2016)
Combines MCTS + deep neural networks + reeinforcement learning (from
human games and from itself)

Beat world champion Lee Sedol 4-1 (March 2016) 11

Libratus and poker (2017)
From Tuomas Sandholm

Winner against 4 professional players in heads up no-limit Texas hold'em

Deep neural networks + Reinforcement learning from scratch (Using CFR+ -
counterfactual regret minimization +)

15 million core hours (1,712 years) of computation

12

Alpha Zero (late 2017)
Principles

Combines MCTS + deep neural networks + reeinforcement learning (from
scratch)

Beat best computer programs in Chess (Stock�sh), Shogi (elmo) and Go (Alpha
Go)

Works on a computer with only 4 TPUs (Tensor Processing Units)

Evaluates 80,000 positions per s vs 70,000,000 for Stock�sh 8

Only 9 hours of learning to beat Stock�sh (3 days to beat AlphaGo Lee)

A Google Cloud TPU board

13

Alpha Zero (late 2017)
But...

Using 5,064 TPUs (5000 1st gen. + 64 2nd gen.) for learning

9 x 5,064 ≈ 5 years of TPU time

9 x (5,000 x 15 + 64 x 30) ≈ 79 years of CPU (Intel Haswell) time...

datacenter

14

Alpha Zero (late 2017)
But...

Using 5,064 TPUs (5000 1st gen. + 64 2nd gen.) for learning

9 x 5,064 ≈ 5 years of TPU time

9 x (5,000 x 15 + 64 x 30) ≈ 79 years of CPU (Intel Haswell) time...

datacenter

The game rules are hard-coded

14

Questions

? Question 1: How to create a program that can play "e�ciently" to any
game without hard-coded rules?

15

Questions

? Question 1: How to create a program that can play "e�ciently" to any
game without hard-coded rules?

? Question 2: How to create a program that can play "e�ciently" to any
game without hard-coded rules in a decent time?

15

Questions

? Question 1: How to create a program that can play "e�ciently" to any
game without hard-coded rules?

? Question 2: How to create a program that can play "e�ciently" to any
game without hard-coded rules in a decent time?

⇛ General Game Playing

15

Questions

? Question 1: How to create a program that can play "e�ciently" to any
game without hard-coded rules?

? Question 2: How to create a program that can play "e�ciently" to any
game without hard-coded rules in a decent time?

⇛ General Game Playing

? Question 3: How to create a program that can play "e�ciently" to any
game without hard-coded rules in a decent time on my computer?

15

General Game Playing (GGP)
Various approaches have been proposed since the 2000s

Automatic constructions of evaluation functions

Logic programming/ASP (Answer Set Programming)

Monte Carlo methods (MCTS)

Constraint-based methods

16

General Game Playing (GGP)
Various approaches have been proposed since the 2000s

Automatic constructions of evaluation functions

Logic programming/ASP (Answer Set Programming)

Monte Carlo methods (MCTS)

Constraint-based methods

Some applications
Educational purpose

A game companion

It can model sequential decision
problems in mono or multiagent
environments

16

The International General Game Playing Competition
IGGPC

Organized by AAAI/Stanford University

From 2005, last in 2016, next in February of 2019 (at the AAAI conference)

http://ggp.stanford.edu/iggpc

Rules

Game manager description from http://ggp.stanford.edu

Time to understand rules: from 1' to 20'

Time per move: from 30'' to 3'
17

http://ggp.stanford.edu/iggpc
http://ggp.stanford.edu/

What do we need for GGP?
Representation of game rules

Understanding these rules (playing legal moves)

Decision making (playing "best" legal moves)

18

Game Description Language (GDL)
Generic language for representing any strategy game

Derived from logic programming with negation and equality

Players and game-objects are described by constants while �uents and actions
by terms

Atoms are constructed from a �nite set of relation symbols and variable
symbols

GDL can describe

All strategy games with complete information

Simultaneous and sequential games

Cooperative and competitive games

GDL-II can describe

All chance games

All games with incomplete information

Expressiveness

GDL is Turing-complete, i.e. it can be used to simulate any Turing machine 19

Game Description Language (GDL)
GDL Keywords

Keyword Description

Keyword Description

role(P) P is a player

init(F) the �uent F is part of the initial state

true(F) F is part of the current state

legal(P, M) P can do the move M

does(P, M) the move of P is M

next(F) F is part of the next state

terminal the current state is terminal

goal(P, N) P receives N as a reward in the current state

20

Game Description Language (GDL)
GDL Keywords

Keyword Description

role(P) P is a player

init(F) the �uent F is part of the initial state

true(F) F is part of the current state

legal(P, M) P can do the move M

does(P, M) the move of P is M

next(F) F is part of the next state

terminal the current state is terminal

goal(P, N) P receives N as a reward in the current state

GDL-II Keywords

Keyword Description Note

random is the player environment games of chance

sees(P, R) P perceives R games with incomplete information

20

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

21

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

initial state

init(cell(1, 1, blank))
init(cell(1, 2, blank))
...
init(cell(3, 3, blank))

21

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

initial state

init(cell(1, 1, blank))
init(cell(1, 2, blank))
...
init(cell(3, 3, blank))

init(control(xplayer))

21

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

initial state

init(cell(1, 1, blank))
init(cell(1, 2, blank))
...
init(cell(3, 3, blank))

init(control(xplayer))

legal moves

legal(PLAYER, mark(X, Y)) ← true(cell(X, Y, blank)), true(control(PLAYER))

legal(xplayer, noop) ← true(control(oplayer))
legal(oplayer, noop) ← true(control(xplayer))

21

A simple example: Tic-Tac-Toe (2)
game state and control updates

;; new marked cell

next(cell(X, Y, x)) ← does(xplayer, mark(X, Y)))
next(cell(X, Y, o)) ← does(oplayer, mark(X, Y)))

22

A simple example: Tic-Tac-Toe (2)
game state and control updates

;; new marked cell

next(cell(X, Y, x)) ← does(xplayer, mark(X, Y)))
next(cell(X, Y, o)) ← does(oplayer, mark(X, Y)))

;; all cells not marked in this turn

next(cell(X, Y, M)) ←
 true(cell(X Y M)), does PLAYER (mark M N),
 distinct X M, distinct Y N

22

A simple example: Tic-Tac-Toe (2)
game state and control updates

;; new marked cell

next(cell(X, Y, x)) ← does(xplayer, mark(X, Y)))
next(cell(X, Y, o)) ← does(oplayer, mark(X, Y)))

;; all cells not marked in this turn

next(cell(X, Y, M)) ←
 true(cell(X Y M)), does PLAYER (mark M N),
 distinct X M, distinct Y N

;; control

next(control(xplayer)) ← true(control(oplayer))
next(control(oplayer)) ← true(control(xplayer))

22

A simple example: Tic-Tac-Toe (3)
terminal states

terminal ← line(x)
terminal ← line(o)
terminal ← not open

23

A simple example: Tic-Tac-Toe (3)
terminal states

terminal ← line(x)
terminal ← line(o)
terminal ← not open

rewards

goal(xplayer, 100) ← line(x)
goal(oplayer, 0) ← line(x)

goal(oplayer, 100) ← line(o)
goal(xplayer, 0) ← line(o)

goal(PLAYER, 50) ← not line(x), not line(o), not open

23

A simple example: Tic-Tac-Toe (4)
additional functions

row(M) ←
 true(cell(X, 1, M)),
 true(cell(X, 2, M)),
 true(cell(X, 3, M))

column(M) ←
 true(cell(1, Y, M))
 true(cell(2, Y, M))
 true(cell(3, Y, M))

diagonal(M)) ←
 true(cell(1, 1, M))
 true(cell(2, 2, M))
 true(cell(3, 3, M))

diagonal(M)) ←
 true(cell(1, 3, M))
 true(cell(2, 2, M))
 true(cell(3, 1, M))

line(M) ← row(M)
line(M) ← column(M)
line(M) ← diagonal(M)

open ← true(cell(X, Y, blank))

24

A Constraint based method for GGP
A Constraint Satisfaction Problem (CSP) consists of a set of variables, a set of
possible values for each variable, and constraints on the valuation of the
variables

A Stochastic Constraint Satisfaction Problem is a CSP with some stochastic
variables

25

A Constraint based method for GGP
A Constraint Satisfaction Problem (CSP) consists of a set of variables, a set of
possible values for each variable, and constraints on the valuation of the
variables

A Stochastic Constraint Satisfaction Problem is a CSP with some stochastic
variables

A SCSP is a 6-tuple 〈X , Y , D, P, C, θ〉:

X is an ordered set of n variables

Y is the subset of X specifying stochastic variables

D is a mapping from X to �nite domains

P is a mapping from Y to probability distributions over the domains of
stochastic variables

C is the set of constraints

θ is a threshold value in the interval [0, 1]

25

Example
X = { x1, x2, y }

Y = { y }

Dx1 = Dx2 = { 1, 2 }

Dy = { 0, 1, 2 }

C = { x1 = x2, y < x1 }

P = uniform distribution on Dy

θ = 2/3

26

Example
X = { x1, x2, y }

Y = { y }

Dx1 = Dx2 = { 1, 2 }

Dy = { 0, 1, 2 }

C = { x1 = x2, y < x1 }

P = uniform distribution on Dy

θ = 2/3

De�nition μSCSP

“ A Stochastic Constraint Satisfaction Problem at one stage (μSCSP) is a
SCSP where all decision variables have higher priority than all stochastic
variables.

26

Solution of a SCSP
De�nitions

Policy: ordered tree on X

Utility of a policy: sum of the leaf utilities weighted by their probabilities

Solution of a SCSP: policy π whose expected utility is greater than or equal to
the threshold θ and satisfying all constraints

27

Solution of a SCSP
De�nitions

Policy: ordered tree on X

Utility of a policy: sum of the leaf utilities weighted by their probabilities

Solution of a SCSP: policy π whose expected utility is greater than or equal to
the threshold θ and satisfying all constraints

Example
The two decision variables x1 and x2 take the value 2

According to the uniform distribution, the stochastic variable y
can take the values 0, 1 and 2

Expected utility = 2/3

27

From GDL to SCSP

28

From GDL to SCSP

29

From GDL to SCSP: Legal moves

30

From GDL to SCSP: Choosing a move

31

From GDL to SCSP: Resolution

32

Resolution (2)
MAC-UCB

Some preprocessing (constraint fusion, Single Arc Consistency, etc.)

Evaluation of the rewards of non �nal states: Monte-Carlo (UCB)

No-good tables

Taking symmetries into account

Structure symmetries

Strategy symmetries

33

Resolution (2)
MAC-UCB

Some preprocessing (constraint fusion, Single Arc Consistency, etc.)

Evaluation of the rewards of non �nal states: Monte-Carlo (UCB)

No-good tables

Taking symmetries into account

Structure symmetries

Strategy symmetries

Formal results
Under small restrictions, and given a horizon T, all our SCSP encodings and
resolution processes are proved to be valid with respect to the semantics of GDL
and GDL + random .

33

Experimental results
Conducted on Intel Xeon E5-2643 CPU 3.3 GHz with 64 GB of RAM and four threads
300 matches for each deterministic game, 1000 matches for each stochastic game

34

Conclusion
Programs of General Game Playing

Far from the level of the dedicated programs...

... But interesting level in a short time!

Not hard-coded rules

Our contributions
GGP player based on SCSP

2016 IGGPC winner (reigning world champion)

Some alternatives to deep learning exist when ressources are limited!

35

Some hot topics
Learning game rules from matches (Inductive GDL)

Using GDL for explanation: open the black box!

General Video Games AI (GVG-AI) and the Video Game De�nition Language
(VGDL)

36

Xin cảm ơn!
sapin

fullscreen 16/9/fullscreen 1280x1024

37

http://syl.lagrue.net/pres/ai4life/france-ia/presentation-woodstock-mosaique/presentation.html
http://syl.lagrue.net/pres/ai4life/france-ia/presentation-woodstock-mosaique-1280x1024/presentation.html

Xin cảm ơn!

38

