General Game Playing:
a Challenge for Al

Sylvain LAGRUE

lagrue@cril.fr - http://syl.lagrue.net JE .
Université d'Artois - CRIL CNRS - France 4\@/ ;: {
Al4Life - 2018-05-09 s VO

UNIVERSITE D’ARTOIS L 4k > -l

http://syl.lagrue.net/

Game: Definition

A game is a system in which players engage in an artificial conflict,
defined by rules, that results in a quantifiable outcome.

— Katie Salen and Eric Zimmerman

Game: Definition

A game is a system in which players engage in an artificial conflict,
defined by rules, that results in a quantifiable outcome.

— Katie Salen and Eric Zimmerman

Strategy Game
= Archetype of intelligent behavior for Human Being

= |n Strategy Games, physical abilities are not necessary: intelligence, focusing,
and knowledge prevail

Game: Definition

A game is a system in which players engage in an artificial conflict,
defined by rules, that results in a quantifiable outcome.

— Katie Salen and Eric Zimmerman

Strategy Game
= Archetype of intelligent behavior for Human Being

= |n Strategy Games, physical abilities are not necessary: intelligence, focusing,
and knowledge prevail

Applications
= Entertainment
= Agent behavior in economics
= Decision support system

» Education (eg. "serious games")

Example of Games

= With complete information: Chess, GO, Checkers, Xiangqi

Chance Games: Backgammon

With incomplete information: Poker, Bridge

Simultaneous games: Rock Paper Scissors

But also asymmetric games, cooperative games, non-zero-sum games, ...

R N
8| I'c o o0
00 -eeesse
— 00/0900000)
0,00 = o B
© Jalala alA[A O
I 8 *
|
D@I:I (] i y i % =
U0z 1
o0y AfUeeaE—
,,,,, A

Al and Games

For scientist and Al researchers
14

Chess is the Drosophila of Artificial Intelligence.

— Alexander Kronrod (1921-1986)

Al and Games

For scientist and Al researchers
(14

Chess is the Drosophila of Artificial Intelligence.

— Alexander Kronrod (1921-1986)

= Controlled environment (no physical constraints, fixed
rules, rational players,...)

= Playground for experimenting many
algorithms/architectures

= Technology showcase

Al and Games

For general public: exert fascination...

»“Fascination...

Al and Games

Timeline et milestones

= 1950 Article: Programming a Computer for Playing Chess

1979 BKG 9.8

1997 Deep Blue

2007 Checker Solved

2016 AlphaGo

2017 Libratus

2018 AlphaZero

Programming a Computer for Playing Chess (1950)

= 1950: Seminal article for Chess
programming from Claude Shannon

= 2 algorithms for playing chess

= "Type A": brute force
(adaptation of minimax)

= "Type B": "fine" selection of
interesting branches

= Shannon also built an automate
that plays some endings with up
1o six pieces

= 1951: Alan Turing proposed a
program, developed on paper, able to
play a full game of chess

Claude Shannon and the Chessmaster
Edward Laske

BKG 9.8, Hans J. Berliner (1979)

= In 1979 BKG 9.8 defeated the world champion of Backgammon, Luigi Villa, by
the score of 7-1

= Main idea: Using fuzzy logic for the transitions between the 3 phases of game
(opening/middle game/end game)

DEC PDP-10

24 23 22 21 20 19 18 17 16 15 14 13

IBM's Deep Blue beats Garry Kasparov (1997)

Deep Blue vs Garry Kasparov (3.5/2.5 -
2w/ 1w, 3 draws)

= Massively parallel supercomputer
(256 dedicated CPUs)

= 11.4 GFlop/s

= Able to evaluate 200 million
positions per second

Chinook solved Checkers (2007)

= Jonathan Schaeffer et al.

= "Solved Checkers": after an exhaustive search, a strategy that leads to a draw
against perfect player was found

Q@ Silicon Graphics

World Draughls Championsiep

Against Marion Tinsley in 1992 (4-2 and 33 draws for Tinsley)

10

Go

Branching factor:
= Checkers (8x8) = 2.8

= Chess =35

= Go (19x19) = 250

11

Go

Branching factor:
= Checkers (8x8) = 2.8

= Chess =35

= Go (19x19) = 250

Monte Carlo Go (1992)

= First use Monte Carlo Tree Search (MCTS) for Go (Bernd Briigmann)

MoGo (2008)

= Introduction of UCT (Upper bound Confidence for Tree = MCTS + UCB Upper
Confidence Bounds)

11

Go

Branching factor:
= Checkers (8x8) = 2.8

= Chess =35

= Go (19x19) = 250

Monte Carlo Go (1992)

= First use Monte Carlo Tree Search (MCTS) for Go (Bernd Briigmann)

MoGo (2008)

= Introduction of UCT (Upper bound Confidence for Tree = MCTS + UCB Upper
Confidence Bounds)

Alpha Go (2016)

= Combines MCTS + deep neural networks + reeinforcement learning (from
human games and from itself)

= Beat world champion Lee Sedol 4-1 (March 2016) 11

Libratus and poker (2017)

= From Tuomas Sandholm
= Winner against 4 professional players in heads up no-limit Texas hold'em

= Deep neural networks + Reinforcement learning from scratch (Using CFR+ -
counterfactual regret minimization +)

= 15 million core hours (1,712 years) of computation

v

12

Alpha Zero (late 2017) b

Principles Google DeepMind

= Combines MCTS + deep neural networks + reeinforcement learning (from
scratch)

Beat best computer programs in Chess (Stockfish), Shogi (e/mo) and Go (Alpha
Go)

= Works on a computer with only 4 TPUs (Tensor Processing Units)

Evaluates 80,000 positions per s vs 70,000,000 for Stockfish 8

Only 9 hours of learning to beat Stockfish (3 days to beat AlphaGo Lee)

A Google Cloud TPU board

13

Alpha Zero (late 2017)

But...
= Using 5,064 TPUs (5000 1st gen. + 64 2nd gen.) for learning

= 9x5,064 = 5 years of TPU time
= 9x(5,000x 15+ 64 x 30) = 79 years of CPU (Intel Haswell) time...

.datacenter

14

Alpha Zero (late 2017)

But...
= Using 5,064 TPUs (5000 1st gen. + 64 2nd gen.) for learning

= 9x5,064 = 5 years of TPU time

= 9x(5,000x 15+ 64 x 30) = 79 years of CPU (Intel Haswell) time...

l=.datacenter

= The game rules are hard-coded

14

Questions

p Question 1: How to create a program that can play "efficiently” to any
° game without hard-coded rules?

15

Questions

p Question 1: How to create a program that can play "efficiently” to any
° game without hard-coded rules?

p Question 2: How to create a program that can play "efficiently” to any
° game without hard-coded rules in a decent time?

15

Questions

p Question 1: How to create a program that can play "efficiently” to any
° game without hard-coded rules?

p Question 2: How to create a program that can play "efficiently” to any
° game without hard-coded rules in a decent time?

= General Game Playing

15

Questions

1
1

Question 1: How to create a program that can play "efficiently” to any
game without hard-coded rules?

Question 2: How to create a program that can play "efficiently” to any
game without hard-coded rules in a decent time?

= General Game Playing

Question 3: How to create a program that can play "efficiently” to any
game without hard-coded rules in a decent time on my computer?

15

General Game Playing (GGP)

Various approaches have been proposed since the 2000s
= Automatic constructions of evaluation functions
= Logic programming/ASP (Answer Set Programming)
= Monte Carlo methods (MCTS)

= Constraint-based methods

16

General Game Playing (GGP)

Various approaches have been proposed since the 2000s

= Automatic constructions of evaluation functions
= Logic programming/ASP (Answer Set Programming)
= Monte Carlo methods (MCTS)

= Constraint-based methods

Some applications

» Educational purpose
= A game companion

= |t can model sequential decision
problems in mono or multiagent
environments

16

The International General Game Playing Competition

IGGPC
= Organized by AAAI/Stanford University

= From 2005, last in 2016, next in February of 2019 (at the AAAI conference)
» http://ggp.stanford.edu/iggpc

Rules

Graphics for
Spectators

Game

Descriptions :l Temporary
Nk Game Manager |+~ Stats Data

Records

Teplip

. Player I cee

Game manager description from http:/ggp.stanford.edu

= Time to understand rules: from 1' to 20'

= Time per move: from 30" to 3'

http://ggp.stanford.edu/iggpc
http://ggp.stanford.edu/

What do we need for GGP?

= Representation of game rules
= Understanding these rules (playing legal moves)

= Decision making (playing "best" legal moves)

18

Game Description Language (GDL)

Generic language for representing any strategy game

» Derived from logic programming with negation and equality

= Players and game-objects are described by constants while fluents and actions
by terms

= Atoms are constructed from a finite set of relation symbols and variable
symbols

GDL can describe

» All strategy games with complete information
= Simultaneous and sequential games
= Cooperative and competitive games

GDL-Il can describe

= All chance games
= All games with incomplete information

Expressiveness

= GDL is Turing-complete, i.e. it can be used to simulate any Turing machine

19

Game Description Language (GDL)

GDL Keywords

Keyword Description
role(P) P is a player

init(F) the fluent F is part of the initial state
true(F) F is part of the current state

legal(P, M) | P can do the move M

does(P, M) |themoveof Pis M

next(F) F is part of the next state

| terminal the current state is terminal

‘Ké¥mzr‘a Description :
) [P receileS N as areward in the current state-

20

Game Description Language (GDL)

GDL Keywords
Keyword Description
role(P) P is a player
init(F) the fluent F is part of the initial state
true(F) F is part of the current state
legal(P, M) | P can do the move M
does(P, M) |themoveof Pis M
next(F) F is part of the next state
terminal the current state is terminal
goal(P, N) | P receives N as areward in the current state

GDL-Il Keywords

Keyword Description Note
random is the player environment | games of chance
sees(P, R) | P perceives R games with incomplete information

20

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

XX

21

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

initial state

init(cell(1, 1, blank))
init(cell(1, 2, blank))

init(cell(3, 3, blank))

XX

21

A simple example: Tic-Tac-Toe
roles

role(xplayer)
role(oplayer)

initial state

init(cell(1, 1, blank))
init(cell(1, 2, blank))

init(cell(3, 3, blank))

init(control(xplayer))

XX

21

A simple example: Tic-Tac-Toe

roles

XX

role(xplayer)
role(oplayer)

initial state

init(cell(1, 1, blank))
init(cell(1, 2, blank))
init(cell(3, 3, blank))

init(control(xplayer))
legal moves

legal(PLAYER, mark(X, Y)) <« true(cell(X, Y, blank)), true(control(PLAYER))

legal(xplayer, noop) <« true(control(oplayer))
legal(oplayer, noop) « true(control(xplayer))

21

A simple example: Tic-Tac-Toe (2)
game state and control updates

s; new marked cell

next(cell(X, Y, x)) « does(xplayer, mark(X, Y)))
next(cell(X, Y, o)) <« does(oplayer, mark(X, Y)))

22

A simple example: Tic-Tac-Toe (2)
game state and control updates

s; new marked cell

next(cell(X, Y, x)) « does(xplayer, mark(X, Y)))
next(cell(X, Y, o)) <« does(oplayer, mark(X, Y)))

;3 all cells not marked in this turn
next(cell(X, Y, M)) «

true(cell(X Y M)), does PLAYER (mark M N),
distinct X M, distinct Y N

22

A simple example: Tic-Tac-Toe (2)
game state and control updates

s; new marked cell

next(cell(X, Y, x)) « does(xplayer, mark(X, Y)))
next(cell(X, Y, o)) <« does(oplayer, mark(X, Y)))

;3 all cells not marked in this turn
next(cell(X, Y, M)) «

true(cell(X Y M)), does PLAYER (mark M N),
distinct X M, distinct Y N

;3 control

next(control(xplayer)) « true(control(oplayer))
next(control(oplayer)) <« true(control(xplayer))

22

A simple example: Tic-Tac-Toe (3)
terminal states

terminal «— line(x)
terminal — line(o)
terminal <— not open

23

A simple example: Tic-Tac-Toe (3)
terminal states

terminal <« line(x)
terminal — line(o)
terminal <— not open

rewards

goal(xplayer, 100) < line(x)
goal(oplayer, 0) <« line(x)

goal(oplayer, 100) <« 1line(o)
goal(xplayer, 0) «— line(o)

goal(PLAYER, 50) < not line(x), not line(o), not open

23

A simple example: Tic-Tac-Toe (4)
additional functions

row(M) «—
true(cell(X, 1, M)),
true(cell(X, 2, M)),
true(cell(X, 3

column(M) «
true(cell(l, Y
true(cell(2, Y, M))
true(cell(3, Y

diagonal(M))
true(cell(l, 1
true(cell(2, 2, M))
true(cell(3, 3

diagonal(M))
true(cell(1, 3
true(cell(2, 2, M))
true(cell(3, 1

line(M) <« row(M)
line(M) < column(M)
1ine(M) < diagonal(M)

open < true(cell(X, Y, blank))

24

A Constraint based method for GGP

= A Constraint Satisfaction Problem (CSP) consists of a set of variables, a set of
possible values for each variable, and constraints on the valuation of the
variables

= A Stochastic Constraint Satisfaction Problem is a CSP with some stochastic
variables

25

A Constraint based method for GGP

= A Constraint Satisfaction Problem (CSP) consists of a set of variables, a set of
possible values for each variable, and constraints on the valuation of the
variables

= A Stochastic Constraint Satisfaction Problem is a CSP with some stochastic
variables

A SCSPis a 6-tuple (X,Y,D,P,C,0) :

= X is an ordered set of n variables

Y is the subset of X specifying stochastic variables

D is a mapping from X to finite domains

P is a mapping from Y to probability distributions over the domains of
stochastic variables

C is the set of constraints

0 is a threshold value in the interval [0, 1]

25

Example

X={x1,%2 Y}

Y={y}

Dy, =Dy, ={1,2}
Dy={0,1,2}
C={x1=xy<x1}

P = uniform distribution on Dy

0=2/3

26

Example

X={x1,%2 Y}

Y={y}

Dy, =Dy, ={1,2}
Dy={0,1,2}
C={x1=xy<x1}

P = uniform distribution on Dy

0=2/3

Definition pnSCSP

A Stochastic Constraint Satisfaction Problem at one stage (USCSP) is a
SCSP where all decision variables have higher priority than all stochastic
variables.

26

Solution of a SCSP

Definitions
= Policy: ordered tree on X
= Utility of a policy: sum of the leaf utilities weighted by their probabilities

= Solution of a SCSP: policy m whose expected utility is greater than or equal to
the threshold 8 and satisfying all constraints

27

Solution of a SCSP

Definitions
= Policy: ordered tree on X
= Utility of a policy: sum of the leaf utilities weighted by their probabilities

= Solution of a SCSP: policy m whose expected utility is greater than or equal to
the threshold 8 and satisfying all constraints

Example X1
= The two decision variables x4 and x, take the value 2 X|2 2
» According to the uniform distribution, the stochastic variable y | 2
can take the values 0, 1 and 2 y
» Expected utility = 2/3 10A l \20

27

From GDL to SCSP

GDL

28

From GDL to SCSP

BE

MSCSP
template

t

29

From GDL to SCSP: Legal moves

BE

MSCSP
template

t

=>

30

From GDL to SCSP: Choosing a move

BE

MSCSP
template

t

Ci+1

t=i

Cons

Strategic
Constraints

t=1

31

From GDL to SCSP: Resolution

e

MSCSP
template

t

SCSP Problem

Stral
Cons

t=i

Strd
Cons|

Strategic
Constraints

32

Resolution (2)
= MAC-UCB
= Some preprocessing (constraint fusion, Single Arc Consistency, etc.)
= Evaluation of the rewards of non final states: Monte-Carlo (UCB)
= No-good tables
» Taking symmetries into account
= Structure symmetries

= Strategy symmetries

33

Resolution (2)
= MAC-UCB
= Some preprocessing (constraint fusion, Single Arc Consistency, etc.)
= Evaluation of the rewards of non final states: Monte-Carlo (UCB)
= No-good tables
» Taking symmetries into account
= Structure symmetries

= Strategy symmetries

Formal results

Under small restrictions, and given a horizon T, all our SCSP encodings and
resolution processes are proved to be valid with respect to the semantics of GDL
and GDL + random.

33

Experimental results

Conducted on Intel Xeon E5-2643 CPU 3.3 GHz with 64 GB of RAM and four threads
300 matches for each deterministic game, 1000 matches for each stochastic game

Deterministic GDL games

Game MAC-UCB uct-sym grave-sym sancho
Amazons torus 10x10 84.2 (+1.2%) 98.1 (£1.7%) 86.7 (+2.7%) 86.2 (+3.1%)
Breakthrough suicide 93.0 (£2.3%) 81.9 (£3.7%) 73.2 (£2.9%) 77.8 (£4.0%)
Chess 76.4 (£2.5%) 953 (£2.1%) 95.4 (£2.5%) 87.9 (£2.1%)
Connect Four 20 20 87.5 (£3.5%) 100.0 (+0.0%) 88.5 (£2.2%) 96.0 (+0.9%)
Copolymer with pie 73.9 (+1.5%) 93.3 (+0.5%) 91.6 (+1.8%) 77.9 (+£3.6%)
English Draughts 85.1 (+2.8%) 97.4 (£1.3%) 71.2 (£3.1%) 59.3 (+£1.5%)
Free For All 2P 53.4 (£0.7%) 84.8 (£1.9%) 72.3 (£1.6%) 71.2 (£2.3%)
Hex 84.0 (11.4%) 100.0 (+0.0%) 89.8 (£2.9%) 78.1 (+1.5%)
Pentago 53.1 (£1.5%) 66.2 (+£2.8%) 58.4 (£2.8%) 54.3 (£0.9%)
Sheep and Wolf 74.8 (£3.2%) 94.6 (£0.9%) 63.2 (+3.6%) 62.1 (£1.5%)
Shmup 58.0 (£1.7%) 63.7 (£2.2%) 52.1 (£0.2%) 53.0 (£0.6%)
TicTac Chess 2P 94.9 (43.4%) 96.5 (+0.4%) 93.2 (+2.3%) 86.1 (+3.3%)
TTCC4 2P 84.4 (£2.3%) 97.2 (£2.1%) 85.7 (£3.1%) 65.8 (=4.1%)
Reversi Suicide 72.2 (£3.2%) 100.0 (+0.0%) 78.7 (+2.2%) 58.2 (+2.2%)

Stochastic GDL games

Backgammon 92.1 (£2.7%) 96.1 (+1.4%) 86.8 (+3.9%) 100.0 (40.0%)
Can't Stop 88.2 (£1.7%) 96.8 (£1.7%) 93.7 (£3.2%) 100.0 (£0.0%)
Kaseklau 73.5 (£3.6%) 721 (£0.9%) 60.2 (+£3.2%) 88.1 (£2.6%)
Pickomino 75.4 (£1.8%) 824 (£2.8%) 95.6 (£1.0%) 92.1 (£2.9%)
Yahtzee 87.4 (£1.6%) 83.1 (+3.3%) 60.9 (+2.5%) 91.8 (+3.3%)

Conclusion

Programs of General Game Playing
= Far from the level of the dedicated programs...
= ... Butinteresting level in a short time!

= Not hard-coded rules

Our contributions
= GGP player based on SCSP
= 2016 IGGPC winner (reigning world champion)

= Some alternatives to deep learning exist when ressources are limited!

35

Some hot topics

= Learning game rules from matches (Inductive GDL)
= Using GDL for explanation: open the black box!

= General Video Games Al (GVG-Al) and the Video Game Definition Language
(VGDL)

36

Xin cam on!

fullscreen 16/9/fullscreen 1280x1024

lrisapin

37

http://syl.lagrue.net/pres/ai4life/france-ia/presentation-woodstock-mosaique/presentation.html
http://syl.lagrue.net/pres/ai4life/france-ia/presentation-woodstock-mosaique-1280x1024/presentation.html

Xin cam on!

38

