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Open-ended gquestion |

= Can we help a computer to automatically understand
documents and natural languages?
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Open-ended gquestion 2

= How to organize, understand, uncover useful
knowledge from a huge amount of texts?



A huge amount of texts
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A huge amount of SMS
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One way to answer

= Help your computer to understand from the very basics
o Word meanings
o Word collocation/interaction
o Senfences, paragraphs
oo
" to complicated things
o Themes of paragraphs/documents
o Opinions, emotions

o ...

m Those are hidden semantics



Hidden semantics
What and why?¢



Hidden semantics: whate

= Evolution/trend of interests over time
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Hidden semantics: whate

= Meanings of pictures
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Hidden semantics: whate

= Objects in pictures




Hidden semantics: whate

= Activities
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Hidden semantics: whate

= Contents of medical images
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Hidden semantics: whate

® |[nteractions of entities
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Hidden semantics: what@¢

= Communities in social networks

DOConnect™

Your medical circles of trust!



Hidden semantics: why hard?e

= Help your computer understand what is “hard”?

o Not easye But what is Yeasy’? - 21:25 73% €3

o Firm. Solid@ é¢ | need a dinner reservation
for Valentine's Day. 99

o Enthusiastice
I'll see if any restaurants have a

- Ambiguity problem table for one.

(a word has many different senses) .
¢¢ No, | need a reservation

= Usage styles of languages for two. 99
o dlangs, teenage languages Why? Is your mother in town?

o Evolvement over time

= Hidden themes are intricately mixed
with other structures such as syntax




Semantics

Representation & learning



Semantic representation

®» Need a computational form to represent knowledge to
help a computer to

o Store knowledge
o Learn knowledge

o Make inference



Some representation approaches

= Classical approaches [Schubert, AAAI 201 5]
o First order logics, Description logics

o Semantic networks, frames
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Some representation approaches

®* Machine-learning approaches
o Topic models [Blei, CACM 2012; Blei et al., JMLR 2003]

o Deep neural networks
[LeCun et al., Nature 2015; Collobert et al., JMLR 2011]

" They tries to learn representation for very basic unifs, such
as words, phrases,...

= Then more complicated forms of semantics can be
learned from text collections.



Learnable representations (1)

= Different algebraic forms have been used:
o Vector [Salton et al.,, CACM 1975]

o Matrix

Tensor

Vector Matrix
o Tensor . _ -

= Finer and finer levels of text are considered

o A document is represented as a vector [Salton et al.,, CACM 1975]

A paragraph is represented as a vector [Le & Mikolov, ICML 2014]

O

o A sentence is represented as a vector [Le & Mikolov, ICML 2014]
o A phrase is represented as a vector [Mikolov et al., NIPS 2013]

o A word is represented as a vector [Schitze, NIPS 1993]



Learnable representations (2)

= More and more complicated tools are used:

o A document:

o A word:
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Word representation

® Input: sequences of words (or text collection, or corpus)

o E.g.: The weather in Tokyo today is nice

= Output: k-dimensional vectors, each for a word

(Neural networks, topic
models, matrix factorization)

x Yokohama | > Learning

x Chiba

x Tokyo

x Like
x Nice v v v
X Love output o
xTV
x Forecast Weather Tokyo nice
x Weather
\ J
Semantic space '

Vector representation of words



After learning

= Many semantic tasks can be done using algebraic
operations.

x Yokohama
x Chiba

x Tokyo
x Like
x Nice

x Love
= Semantic similarity xTV
x Forecast
o Between words, e.g., x Weather

Semantic space

VQueen ~ VKing — VMan + VWoman

. . . V 1 e'V ove
Similarity(Viike, Viove) = c08(Viike, Viove) = 7 25T

o Between documents, e.qg.,

Similarity(dy, ds) = cos(di, d2) = g T

= Classification, prediction, inference can be done efficiently
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Topic modeling (1)

= One of the main ways to automatically understand the
meanings of fext.

= Efficient tools to organize, understand, uncover useful
knowledge from a huge amount of data.

= Efficient tools to discover the iN
data.

Exaponential
Quzntity of global digital data, 2sabytes

Each day: @
230M tweets,
2.7B comments to FB,

86400 hours of video
to YouTube




Topic modeling (2)

= Provides efficient tools for text analysis
[DiMaggio et al., Poetics, 2013]

o Explicit
(enable interpretations & exploration of a large text collection, and
test hypotheses)

o Automated
(the algorithms can do with a minimum human intervention)

o Inductive
(enable researchers to discover the hidden structures of data before
Imposing their priors on the analysis)

o Recognize the rationality of meaning
(the meaning of a term might vary across different domains)



Topic models: some concepts (1)
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= Topic: is a set of semantically related words
= Document: is a mixture of few topics [Blei et al., JMLR 2003]

= Topic mixture: shows proportions of topics in a document



Topic models: some concepts (2)
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= |n reality, we only observe the documents.
= The other structures (topics, mixtures, ...) are hidden.

= Those structures compose a Topic Model.



Topic models: LDA

= Latent Dirichlet allocation (LDA) [Blei et al., JMLR 2003] is
the most famous topic model.

o LDA assumes a corpus to be composed from K topics 31, ..., B x

" Fach document is generated by
o First choose a topic mixture 6 ~ Dirichlet()
o For the n™ word in the document
» Choose topic index z, ~ Multinomial(0) QD\

« Generate word w,, ~ Multinomial (ﬁzn)

o
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Topic models: learning
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m Given a corpus, our aim is to infer the hidden variables,

" e.9., fopics, relations, interactions, ... P(8,0, z|corpus)?



Topic models: posterior inference

Rockets strike Kabul -- AP, August 8, 1990.
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" Infer the hidden variables for a given document, e.g.,
o What topics/objects appear in? P9, z|lw, 3)?
o What are their contributions? PO|lw,B)? P(zlw,B)?



Recent tfrends in tfopic modeling

hLDA

HDP FSTM
LSA pLSA LDA DTM LinkLDA  STC
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® [arge scale learning: learn models from huge corpora
(e.g., 100 millions of documents).

m Sparse modeling: respect the sparseness nature of texts.
= Nonparametric models: automatically grow the model size.

» Theoreftical foundation: provide guarantees for learning and
posterior inference.

® Incorporating meta-data: encode meta-data into a model.



Recent applications (1)

= Boosting performance of Search engines over the baseline
[IWang et al., ACM TIST 2014]
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Recent applications (2)

= Boosting performance of Online advertisement over the
baseline [Wang et al., ACM TIST 2014]

AUC improvement (%)




Some challenges

Lessons learnt and Qur solutions



Challenges: first

= Can we develop a fast inference method that has
provably theoretical guarantees on qualitye

" Inference on each data instance:
o What topics appear in a document?
o What are they talking aboute

o What animals appear in a picture?

= Vital role in many probabilistic models:
o Enable us to design fast algorithms for massive/stream data.

o Ensure high confidence and reliability when using topic models in
practices

® But: inference is often infractable (NP-hard)
[Sontag & Roy, NIPS 2011]



Challenges: second

" How can we learn a big topic model from big datae
= Big model:
o billions of variables/parameters

o Which might not fit in the memory of a supercomputer

= Many applications lead to this problem:
o Exploration of a century of literature
o Exploration of online forums/networks
o Analyzing political opinions

o Tracking objects in videos

® But largely unexplored in the literature.



Challenges: third

= Can we develop methods with provable guarantees on
quality for handling streaming/dynamic fext collectionse

= Many practical applications:
o Analyzing political opinions in online forums
o Analyzing behaviors & interests of online users

o ldentifying entities and temporal structures from news.

® But: existing methods often lack a theoretical guarantee
on quality.



Lessons: learnability

" [N theory:

o A model can be recovered exactly if the number of documents is

sufficiently large ©
[Anandkumar et al., NIPS 2012; Arora et al., FOCS 2012; Tang et al., ICML 2014]

o It is impossible to guarantee learnability of a model when having few
documents ®

o A model cannot be learned from very short texts ®
[Arora et al., ICML 2016; Tang et al., ICML 2014]

" [N practice: [Tang et al., ICML 2014]

o Once there are sufficently many documents, further increasing the
number may not significantly improve the performance.

o The document length should be long, but need not too long.

o A model performs well when the topics are well separated.



Lessons: practical effectiveness

® Collapsed Gibbs sampling (CGS):

o Most efficient

o Better than VB and BP in large-scale applications
[Wang et al., TIST 2014]

= Belief propagation (BP):
o Memory-intensive
= Variational Bayes (VB): [Jiang et al., PAKDD 2015]

o Often slow

o And inaccurate

= Collapsed variational Bayes (CVBO): [Foulds et al., KDD 2013]

o Most efficient and accurate



Lessons: posterior inference

= Inference for individual texts:
o Variational method (VB) [Blei et al., JMLR 2003]
o Collapsed VB (CVB) [Teh et al., NIPS 2007]
o CVBO [Asuncion et al., UAI 2009]
o Gibbs sampling [Criffiths & Steyver, PNAS 2004]
o OPE [Than & Doan, 2015]

= |t is offen infractable in theory [Sontag & Roy, NIPS 2011].

= But It might be tractable in practice
[Than & Doan, ACML 2014; Arora et al., ICML 2016]

® OPE is a fast algorithm that has provable guarantees on
quality.



Qur works

= Develop models & methods that help us to infer hidden
stfructures from big/streaming data
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= Our related projects: NAFOSTED (VN), AFOSR (US)



Some recent results
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Some recent results

= Application to Word Embedding (Neural networks, fopic
models, matrix factorization)
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