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Open-ended question 1 

¡ Can we help a computer to automatically understand 
documents and natural languages?  
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Open-ended question 2 

¡ How to organize, understand, uncover useful 
knowledge from a huge amount of texts?  
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A huge amount of texts 
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A huge amount of SMS 
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One way to answer 

¡ Help your computer to understand from the very basics 

¨  Word meanings 

¨  Word collocation/interaction 

¨  Sentences, paragraphs 

¨  … 

¡  to complicated things  

¨  Themes of paragraphs/documents 

¨  Opinions, emotions 

¨  … 

¡ Those are hidden semantics 
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Hidden semantics 
What and why? 

 



Hidden semantics: what? 

¡ Evolution/trend of interests over time 
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Hidden semantics: what? 

¡ Meanings of pictures 
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Hidden semantics: what? 

¡ Objects in pictures 
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Hidden semantics: what? 

¡ Activities 
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Hidden semantics: what? 

¡ Contents of medical images 
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Hidden semantics: what? 

¡  Interactions of entities 
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Hidden semantics: what? 

¡ Communities in social networks 
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Hidden semantics: why hard? 

¡ Help your computer understand what is “hard”? 

¨  Not easy? But what is “easy”? 

¨  Firm, Solid? 

¨  Enthusiastic? 

àAmbiguity problem  
(a word has many different senses) 

¡ Usage styles of languages 

¨  Slangs, teenage languages 

¨  Evolvement over time 

¡ Hidden themes are intricately mixed  
with other structures such as syntax 
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Semantics 
Representation & learning 

 



Semantic representation 

¡ Need a computational form to represent knowledge to 
help a computer to 

¨  Store knowledge 

¨  Learn knowledge 

¨  Make inference 
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Some representation approaches 

¡ Classical approaches [Schubert, AAAI 2015] 

¨  First order logics, Description logics 

¨  Semantic networks, frames 

¨  Ontology 

¨  … 
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A semantic network 
(source: wikipedia) 
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Some representation approaches 

¡ Machine-learning approaches 

¨  Topic models [Blei, CACM 2012; Blei et al., JMLR 2003] 

¨  Deep neural networks  
[LeCun et al., Nature 2015; Collobert et al., JMLR 2011] 

¡ They tries to learn representation for very basic units, such 
as words, phrases,… 

¡ Then more complicated forms of semantics can be 
learned from text collections. 
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Semantics can be 
learned automatically 

from data J 



Learnable representations (1) 

¡ Different algebraic forms have been used: 

¨  Vector [Salton et al., CACM 1975] 

¨  Matrix 

¨  Tensor  

¡ Finer and finer levels of text are considered 

¨  A document is represented as a vector [Salton et al., CACM 1975] 

¨  A paragraph is represented as a vector [Le & Mikolov, ICML 2014] 

¨  A sentence is represented as a vector [Le & Mikolov, ICML 2014] 

¨  A phrase is represented as a vector [Mikolov et al., NIPS 2013] 

¨  A word is represented as a vector [Schütze, NIPS 1993] 
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Learnable representations (2) 

¡ More and more complicated tools are used: 

¨  A document: 

¨  A word: 
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Word representation 

¡  Input: sequences of words (or text collection, or corpus) 

¨  E.g.: The weather in Tokyo today is nice 

¡ Output: k-dimensional vectors, each for a word 
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After learning 

¡ Many semantic tasks can be done using algebraic 
operations. 

¡ Semantic similarity 

¨  Between words, e.g., 

¨  Between documents, e.g., 

¡ Classification, prediction, inference can be done efficiently 
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Topic modeling (1) 

¡ One of the main ways to automatically understand the 
meanings of text. 

¡ Efficient tools to organize, understand, uncover useful 
knowledge from a huge amount of data. 

¡ Efficient tools to discover the hidden semantics/structures in 
data. 
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Topic modeling (2) 

¡ Provides efficient tools for text analysis  
[DiMaggio et al., Poetics, 2013] 

¨  Explicit  
(enable interpretations & exploration of a large text collection, and 
test hypotheses) 

¨  Automated 
(the algorithms can do with a minimum human intervention) 

¨  Inductive 
(enable researchers to discover the hidden structures of data before 
imposing their priors on the analysis) 

¨  Recognize the rationality of meaning 
(the meaning of a term might vary across different domains) 
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Topic models: some concepts (1) 

¡ Topic: is a set of semantically related words 

¡ Document: is a mixture of few topics [Blei et al., JMLR 2003] 

¡ Topic mixture: shows proportions of topics in a document 
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Topic models: some concepts (2) 

¡  In reality, we only observe the documents. 

¡ The other structures (topics, mixtures, ...) are hidden. 

¡ Those structures compose a Topic Model. 
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Topic models: LDA 

¡ Latent Dirichlet allocation (LDA) [Blei et al., JMLR 2003] is 
the most famous topic model. 

¨  LDA assumes a corpus to be composed from K topics 

¡ Each document is generated by 

¨  First choose a topic mixture 

¨  For the nth word in the document 

v  Choose topic index  

v  Generate word  
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�1, ...,�K

✓ ⇠ Dirichlet(↵)

zn ⇠Multinomial(✓)

wn ⇠Multinomial(�zn)



LDA 
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Topic models: learning 

¡ Given a corpus, our aim is to infer the hidden variables, 

¡ e.g., topics, relations, interactions, ... 
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Topic models: posterior inference 

¡  Infer the hidden variables for a given document, e.g., 

¨  What topics/objects appear in? 

¨  What are their contributions? 
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Some topics previously learned from a collection of newsHow much topics contribute
 to the news?

Rockets strike Kabul -- AP, August 8, 1990.
More than a dozen rockets slammed into Afghanistan's capital of Kabul today, killing 14 
people and injuring 10, Afghan state radio reported. No one immediately claimed 
repsonsibility for the attack. But the Radio Kabul broadcast, monitored in Islamabad, blamed 
``extremists,'' presumably referring to U.S.-backed guerrillas headquartered in Pakistan. 
Moslem insurgents have been fighting for more than a decade to topple Afghanistan's 
Communist-style government. In the past year, hundreds of people have died and thousands 
more injured in rocket assaults on the Afghan capital.
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Recent trends in topic modeling 

¡  Large scale learning: learn models from huge corpora  
(e.g., 100 millions of documents). 

¡  Sparse modeling: respect the sparseness nature of texts. 

¡ Nonparametric models: automatically grow the model size. 

¡  Theoretical foundation: provide guarantees for learning and 
posterior inference. 

¡  Incorporating meta-data: encode meta-data into a model. 
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Recent applications (1) 

¡ Boosting performance of Search engines over the baseline 
[Wang et al., ACM TIST 2014] 
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Peacock: Learning Long-Tail Topic Features for Industrial Applications 39:19
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Fig. 10. (A) Topic features improve retrieval in search engine. (B) Performance improvement in retrieval
after topic de-duplication by topic clustering based on L1 distance.

MAP becomes less salient when the number of topics changes from 104 to 105. This
is mainly attributed to the problem of topic duplication. Figure 10B shows that topic
de-duplication method can further improve the relevance of information retrieval. The
MAP value of retrieval grows when we prune more duplicated topics (lower L1 distance
can prune more similar topics in Subsection 3.4). Usually, the MAP stops increasing
when we prune duplicates from the initial 106 to around 105 topics. This result implies
that 105 is a critical number of topics to describe subtle word senses in big query data
with 2.1 × 105 vocabulary words. If the L1 distance is too small such as 0.1, it will
degrade the MAP performance by removing more non-duplicate topics.

The online advertising experiment is conducted on a real contextual advertising sys-
tem, https://tg.qq.com/. This system logs every ad shown to a particular user in a par-
ticular page view as an ad impression. It also logs every click of an ad. By taking each
impression as a training instance, and labeling it by whether it was clicked, we obtain
9.9 billion training samples and 1.1 billion test samples. We train 5 hypothetical mod-
els, whose topic features are extracted using 5 different LDA models with 102, 5 × 102,
103, 104 and 105 topics, respectively. Following the judgment rule of Task 2 in KDD Cup
2012, a competition of ad pCTR, we compare our hypothetical models with the baseline
by their prediction performance measured in area under the curve (AUC). Figure 11

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: December 2014.



Recent applications (2) 

¡ Boosting performance of Online advertisement over the 
baseline [Wang et al., ACM TIST 2014] 
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Fig. 11. Topic features improve the pCTR performance in online advertising systems.

shows that all hypothetical models gain relative AUC improvement (%) than the base-
line (AUC = 0.7439). Variance is too small to be shown. This verifies the value of big
LDA models. Also, the AUC improvement grows with the increase of the number of
topics learned by Peacock. The reason that the performance of 104 is lower than that
of 103 is because of many topic duplicates in 104 topics. After using automatic topic de-
duplication by asymmetric Dirchlet prior learning (Subsection 3.4), the performance of
105 becomes better than that of 104. This result is consistent with those in Figure 10.

6. CONCLUSIONS
Topic modeling techniques for big data are needed in many real-world applications. In
this paper, we confirm that a big LDA model with at least 105 topics inferred from 109

search queries can achieve a significant improvement in industrial applications like
search engine and online advertising systems. We propose a unified solution Peacock
to do topic modeling for big data. Peacock uses a hierarchical distributed architecture
to handle large-scale data as well as LDA parameters. In addition, Peacock addresses
some novel problems in big topic modeling, including real-time prediction and topic
de-duplication. We show that Peacock is scalable to more topics than the current state-
of-the-art industrial solution Yahoo!LDA. Through two online applications, we also
obtain the following experiences:

— The good performance is often achieved when the number of topics is approximately
equal to or more than the number of vocabulary words. In our experiments, the
vocabulary size is 2.1× 105 so that the number of topics K ≥ 105. In other industrial
applications, the vocabulary size may reach a few millions or even a billion. The
Peacock system can do topic feature learning when K ≥ 107 is needed.

— The topic de-duplication method is a key technical component to ensure that K ≥ 105

topics can provide high-quality topic features. Better topic de-duplication techniques
remain to be an open research issue.

— The real-time topic prediction method for a large number of topics is also important
in industrial applications. If K ≥ 107, faster prediction methods are needed and
remain to be a future research issue.

In our future work, we will study how to deploy online LDA algorithms in Peacock, and
how to implement inference algorithms to learn other topic models such as HDP [Teh
et al. 2004] and author-topic models [Steyvers et al. 2004].

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: December 2014.
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Some challenges 
Lessons learnt and Our solutions 

 



Challenges: first 

¡ Can we develop a fast inference method that has 
provably theoretical guarantees on quality? 

¡  Inference on each data instance: 

¨  What topics appear in a document? 

¨  What are they talking about? 

¨  What animals appear in a picture? 

¡ Vital role in many probabilistic models: 

¨  Enable us to design fast algorithms for massive/stream data.  

¨  Ensure high confidence and reliability when using topic models in 
practices 

¡ But: inference is often intractable (NP-hard) 
[Sontag & Roy, NIPS 2011] 
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Challenges: second 

¡ How can we learn a big topic model from big data? 

¡ Big model:  

¨  billions of variables/parameters 

¨  Which might not fit in the memory of a supercomputer 

¡ Many applications lead to this problem: 

¨  Exploration of a century of literature 

¨  Exploration of online forums/networks 

¨  Analyzing political opinions 

¨  Tracking objects in videos 

¡ But largely unexplored in the literature. 
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Challenges: third 

¡ Can we develop methods with provable guarantees on 
quality for handling streaming/dynamic text collections? 

¡ Many practical applications: 

¨  Analyzing political opinions in online forums 

¨  Analyzing behaviors & interests of online users 

¨  Identifying entities and temporal structures from news. 

¡ But: existing methods often lack a theoretical guarantee 
on quality. 
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Lessons: learnability 

¡  In theory: 

¨  A model can be recovered exactly if the number of documents is 
sufficiently large J 
[Anandkumar et al., NIPS 2012; Arora et al., FOCS 2012; Tang et al., ICML 2014] 

¨  It is impossible to guarantee learnability of a model when having few 
documents L 

¨  A model cannot be learned from very short texts L 
[Arora et al., ICML 2016; Tang et al., ICML 2014] 

¡  In practice: [Tang et al., ICML 2014] 

¨  Once there are sufficently many documents, further increasing the 
number may not significantly improve the performance. 

¨  The document length should be long, but need not too long.  

¨  A model performs well when the topics are well separated. 
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Lessons: practical effectiveness 

¡ Collapsed Gibbs sampling (CGS): 

¨  Most efficient 

¨  Better than VB and BP in large-scale applications  
[Wang et al., TIST 2014] 

¡ Belief propagation (BP): 

¨  Memory-intensive 

¡ Variational Bayes (VB): [Jiang et al., PAKDD 2015] 

¨  Often slow 

¨  And inaccurate 

¡ Collapsed variational Bayes (CVB0): [Foulds et al., KDD 2013] 

¨  Most efficient and accurate 
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Lessons: posterior inference 

¡  Inference for individual texts: 

¨  Variational method (VB) [Blei et al., JMLR 2003] 

¨  Collapsed VB (CVB) [Teh et al., NIPS 2007] 

¨  CVB0 [Asuncion et al., UAI 2009] 

¨  Gibbs sampling [Griffiths & Steyver, PNAS 2004] 

¨  OPE [Than & Doan, 2015] 

¡  It is often intractable in theory [Sontag & Roy, NIPS 2011]. 

¡ But it might be tractable in practice  
[Than & Doan, ACML 2014; Arora et al., ICML 2016] 

¡ OPE is a fast algorithm that has provable guarantees on 
quality. 
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Our works 

¡ Develop models & methods that help us to infer hidden 
structures from big/streaming data 

¡ Many applications 

¡ Our related projects: NAFOSTED (VN), AFOSR (US) 
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Social network 
analysis 

recently deceased—also have spikes corresponding to national holidays, unforseen trag-
edies, and the death of Senator Craig Thomas (R-WY).

8 Assessing Validity of Estimated Priorities

To validate the estimated expressed agendas from Senate press releases, I use a set of well-
established facts about legislative behavior that also have intuitive appeal. If the expressed
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¡ Some achievements 

¡  Inference for individual texts  
with a theoretical guarantee  
of fast convergence  
à 5-100 times faster 

 

¡  Stochastic learning for streams  
with far less training documents,  
yet much better performance 
à better predictiveness,  
20-1000 times faster 

Some recent results 
46 
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¡ Application to Word Embedding 

Some recent results 
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by combination of 
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