
These lecture notes are for a short course given in spring 2016 at the
Vietnam Institute for Advanced Study in Mathematics. The material in
the first two lectures is discussed (in much greater detail) in the upcoming
book by Lyons and Peres [3]. The material in the third lecture is taken from
papers by Evans et al. [2] and by Borgs et al. [1].

1 Infinite trees

Definition 1.1. A labelled, rooted tree T is a non-empty set of finite se-
quences of non-negative integers such that for every n ≥ 1 and (i1, . . . , in) ∈
T ,

1. the sequence (i1, . . . , in−1) ∈ T ; and

2. for every 1 ≤ j ≤ in, the sequence (i1, . . . , in−1, j) ∈ T .

Applying the first property in Defintion 1.1 repeatedly, it follows that
every labelled, rooted tree contains the empty sequence ∅; we call this el-
ement the root. The children of u = (i1, . . . , in) ∈ T (denoted C(u)) is
the set of v ∈ T of the form (i1, . . . , in, in+1). The parent of a non-empty
u = (i1, . . . , in) ∈ T is (i1, . . . , in−1). A ray of T is an infinite sequence
(i1, i2, . . . ) with the property that (i1, . . . , in) ∈ T for every n. We write
| · | for the length of a sequence (so that |(i1, . . . , in)| = n), and Tn for
{x ∈ T : |x| = n}. If u = (i1, . . . , in) ∈ T , then we write T (u) for the subtree
at u:

T (u) = {(j1, . . . , jm) : (i1, . . . , in, j1, . . . , jm) ∈ T}.

We draw a tree in rows, starting with a dot for ∅ at the top. In row n,
we draw a dot for each u ∈ Tn (from left to right in lexicographic order) and
a line connecting it to its parent in Tn−1. Here is an example:

Definition 1.2. The labelled, rooted tree T is locally finite if |Tn| <∞ for
all n.

In these notes, we will only be talking about labelled, rooted, locally
finite trees; from now on, we will just call them trees.

Definition 1.3 (Growth rate). For a tree T , define the lower and upper
growth rates of T by

gr(T ) = lim inf
n→∞

|Tn|1/n

gr(T ) = lim sup
n→∞

|Tn|1/n.
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If gr(T ) = gr(T ), define the growth rate of T by

gr(T ) = gr(T ) = gr(T ) = lim
n→∞

|Tn|1/n.

The growth rate of a tree is a reasonable way of measuring how “large”
it is, but it has at least two clear flaws: first, it is not defined for every tree;
even if it is defined, it depends on the structure of the tree in a very coarse
way. It turns out that there is a different way of measuring the “size” of a
tree that is in many senses better than the growth rate.

1.1 Constrained flows and the branching number

Definition 1.4. A flow θ on the tree T is a function θ : T → [0,∞) such
that for every u ∈ T ,

θ(u) =
∑

v∈C(u)

θ(v). (1)

The strength of θ is |θ| = θ(∅).

If we think of the tree T as a collection of pipes, then we can think of
θ(u) as the amount of water flowing into u from its parent (unless u = ∅,
in which case θ(u) is the amount of water that we are pouring into u). The
condition (1) says that the amount of water flowing into u is the same as
the amount flowing out. Note that θ ≡ 0 is a flow; we call it the trivial flow.

Exercise 1.1.

1. For any flow θ and any n ≥ 0,
∑

u∈Tn θ(u) = |θ|.

2. If |T | <∞ then the only flow on T is θ ≡ 0.
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Definition 1.5. For λ > 0, let Θ(T, λ) be the set of flows θ on T satisfying
|θ(u)| ≤ λ−|u| for all u ∈ T ; we say Θ(T, λ) is trivial if it contains only the
trivial flow. The branching number of T is

br(T ) = inf{λ > 0 : Θ(T, λ) is trivial}
= sup{λ > 0 : Θ(T, λ) is non-trivial}.

To see that the two definition of br(T ) are equivalent, note that Θ(T, λ) ⊆
Θ(T, λ′) for all λ ≥ λ′. It follows that Θ(T, λ) is trivial for every λ > br(T ),
while Θ(T, λ) is non-trivial for every λ < br(T ).

By part 1 of Exercise 1.1, there is a one-sided relationship between
growth rate and branching number: for any λ > 0, any n ≥ 0, and any
θ ∈ Θ(T, λ), Exercise 1.1 implies that

|θ| =
∑
u∈Tn

θ(u) ≤ |Tn|λ−n.

Taking n → ∞, we have |θ| ≤ lim infn(|Tn|1/n/λ)n; if λ > gr(T ) then the
right hand side is zero and we conclude that Θ(T, λ) is trivial. Hence,

br(T ) ≤ gr(T ). (2)

Example 1.6. Let T be the k-ary tree – that is, T consists of all finite
strings over {0, . . . , k − 1}. Since |Tn| = kn for all n, gr(T ) = k. By (2),
br(T ) ≤ k. On the other hand, θ(u, v) = k−|v| (for v ∈ C(u)) is a non-zero
flow that belongs to Θ(T, k); hence, br(T ) = gr(T ) = k.

Example 1.7. We can construct a tree T with |Tn| = 2n for every n (and
hence gr(T ) = 2), but with branching number 1. We will describe it in
words, and leave some details as an exercise: first, let ∅ have two children.
Inductively for n ≥ 1, write down Tn in lexicographic order. The first 2n−1

elements get three children each; the second 2n−1 elements get one child
each.

Since this describes a tree of infinite height, br(T ) ≥ 1. To see that
br(T ) = 1, take any λ > 1 and suppose that θ ∈ Θ(T, λ). Now, for any
u 6= 0n ∈ T , gr(T (u)) = 1 (by Exercise 1.2). Hence, (2) applied to T (u)

implies that θ(u) = 0. Since θ(∅) =
∑

u∈Tn θ(u) for all n, we must have
θ(∅) = θ(0n) ≤ λ−n for all n, and so θ ≡ 0.

Exercise 1.2.

1. Write down T from Example 1.7 explicitly as a set of finite strings of
non-negative integers.

3



2. Show that gr(T u) = 1 for all u 6= 0n ∈ T .

3. For every α > 1, give an example of a tree T with gr(T ) = α but
br(T ) = 1.

1.2 Electricity and the branching number

We defined the branching number in terms of contrained flows (or, intu-
itively, water flowing through pipes of limited capacity). It turns out that
the branching number can also be characterized in terms of the “energy” of
a “resistor network.” Given λ > 0 and a flow θ, we define the energy of θ
with respect to λ by

Eλ(θ) =
∑
u∈T

λ|u|θ2(u).

The intuition here is that we construct the tree T out of electrical resistors,
where the resistor on the edge leading into u has a resistance of λ|u| ohms.
Now we send an electrical current through the network, where θ(u) amps
flow into u. If this were a real circuit, Eλ(θ) would be the amount of energy
dissipated by the resistors. It turns out that this electrical analogy may be
carried much further; see [3] for more details.

Theorem 1.8.

br(T ) = sup{λ : ∃ non-trivial flow θ with Eλ(θ) <∞}.

Proof of one direction. We will only prove one direction of Theorem 1.8 (the
direction that we will need later); for the other direction, see [3, Chapter 3].
Specifically, we will show that

br(T ) ≤ sup{λ > 0 : ∃ non-trivial flow θ with Eλ(θ) <∞}.

To show this, take λ < br(T ) and choose some λ′ ∈ (λ,br(T )). Then there
is some non-trivial flow θ ∈ Θ(T, λ′). For this θ,

Eλ(θ) =
∑
n≥0

∑
u∈Tn

θ2(u)λ|u|

≤
∑
n≥0

∑
u∈Tn

θ(u)(λ/λ′)|u|

=
∑
n≥0

(λ/λ′)n
∑
u∈Tn

θ(u).
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Recalling from Exercise 1.1 that
∑

u∈Tn θ(u) = |θ|, it follows that

Eλ(θ) ≤ |θ|
∑
n≥0

(λ/λ′)n <∞.

Example 1.9. Let T be the binary tree (that is, the k-ary tree for k = 2). In
Example 1.6, we saw that br(T ) = 2 and that “water flows” at the critical
value (i.e., Θ(T, 2) is non-trivial). By Theorem 1.8, 2 is also the critical
value for “electricity to flow” on T . However, electricity does not flow at
the critical value: indeed, if θ is a non-trivial flow on T then

E2(θ) =
∑
n≥0

2n
∑
u∈Tn

θ2(u) ≥
∑
n≥0

(∑
u∈Tn

θ(u)

)2

=∞,

where the inequality follows by the Cauchy-Schwarz inequality and the last
equality follows from Exercise 1.1.

Exercise 1.3. The purpose of this exercise is to construct a tree T such that
electricity does flow at the critical value. Let an be some non-decreasing
sequence such that a1 = 1 and anλ

−n → 0 for all λ > 1. Given such a
sequence, let T be the tree constructed recursively as follows: if 3|Tn−1| ≤
an2n then let every u ∈ Tn−1 have 3 children; otherwise, let u ∈ Tn−1 have
2 children.

1. Show that br(T ) = 2.

2. Construct a sequence an and a flow θ on the resulting tree T such that
E2(θ) <∞.

1.3 Cutsets and the branching number

A third characterization of the branching number comes from the notion of
a cutset.

Definition 1.10. A set Π ⊂ T is a cutset if for every ray (i1, i2, . . . ) there
exists some n such that (i1, . . . , in) ∈ Π. The cutset Π is minimal if for every
(i1, . . . , in) ∈ T , there is at most one m ≤ n such that (i1, . . . , im) ∈ Π.

It is easy to check that a cutset Π is minimal if and only if it is inclusion-
minimal, in the sense that every cutset Π′ ⊆ Π satisfies Π′ = Π.

Exercise 1.4. Show that every minimal cutset is finite. Hint: suppose
we have an infinite, minimal cutset Π. Take a sequence un ∈ T , |un| →
∞ such that un has a child in Π. Use the local finiteness property and a
diagonalization argument to construct a ray that does not pass through Π.
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Theorem 1.11. For any tree T ,

br(T ) = inf{λ > 0 : inf
Π

∑
u∈Π

λ−|u| = 0},

where the inner infimum runs over all cutsets Π.

Theorem 1.11 is essentially a special case of the well-known “max flow
min cut” theorem in graph theory. In order to be self-contained, we will
give a proof.

Proof. For λ < br(T ), there exists some non-trivial θ ∈ Θ(T, λ). Then
for every minimal cutset Π,

∑
u∈Π λ

−|u| ≥
∑

u∈Π θ(u) = |θ|. (This is an
extension of Exercise 1.1, and we leave it as an exercise.) Hence,

br(T ) ≤ inf{λ > 0 : inf
Π

∑
u∈Π

λ−|u| = 0}.

The other direction is a little more difficult. We fix λ and suppose that
infΠ

∑
u∈Π λ

−|u| = ε > 0; we will prove Theorem 1.11 by constructing a
non-trivial flow in Θ(T, λ).

First, we restrict ourselves to finite levels of T : say that θ : T → [0,∞)
is a flow up to n if θ(u) = 0 for all |u| > n and

θ(u) =
∑

v∈C(u)

θ(v)

for all |u| < n. Let Θn(T, λ) be the set of flows θ up to n satisfying θ(u) ≤
λ−|u| for every u. Note that we may define the energy of flows up to n in
the same way that we defined it for flows. We say that a cutset Π is a cutset
up to n if every u ∈ Π satisfies |u| ≤ n.

Now fix n ∈ N. Note that (by the local finiteness property), Θn(T, λ) is
compact; we claim that

max{|θ| : θ ∈ Θn(T, λ)} ≥ ε. (3)

By compactness, we may choose some θ such that |θ| is maximal among all
θ ∈ Θn(T, λ). Say that u ∈ T, |u| ≤ n is augmentable if θ(v) < λ−|v| for
every v that is an ancestor of, or equal to, u. Since θ has maximal strength,
every augmentable u must satisfy |u| < n (otherwise, we could increase θ’s
strength by increasing the flow slightly for every ancestor of u). Let A ⊂ T
be the set of augmentable vertices; note that if u ∈ A then u’s parent is also
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in A. Moreover, we may assume that ∅ ∈ A; otherwise we are done, because
|θ| = θ(∅) = 1, which is at least ε because Π = {∅} is a cutset.

Let Π be the set of u ∈ T such that u 6∈ A but u’s parent is in A. We
claim that

(i) Π is a cutset up to n,

(ii) Π is minimal, and

(iii) θ(u) = λ−|u| for every u ∈ Π.

To prove (i), note first that u ∈ Π implies that the parent (v, say) of u is
in A; hence, |v| < n and so |u| ≤ n. Moreover, Π is a cutset because every
u ∈ Tn has some ancestor in A; hence, it also has some ancestor (or possibly
u itself) in Π. For (ii) note that if u ∈ Π then u’s parent is augmentable and
so every ancestor of u is augmentable (and hence not in Π). To prove (iii), if
u’s parent were augmentable and θ(u) were strictly smaller than λ−|u| then
u would also be augmentable (and hence not in Π). Hence,

|θ| =
∑
u∈Π

θ(u) =
∑
u∈Π

λ−|u| ≥ ε,

where the first equality follows from (i) and (ii) and the second follows from
(iii). This proves (3).

To complete the proof, for every n take θn ∈ Θn(T, λ) with |θn| ≥ ε.
By a diagonalizaton argument, there is a subsequence nk such that θnk(u)
converges for every u; define θ by θ(u) = limk→∞ θnk(u). Then

(i) θ(u) ≤ λ−|u| because every θnk(u) ≤ λ−|u|;

(ii) θ(∅) ≥ ε because every θnk(∅) ≥ ε; and

(iii) θ is a flow: for every u ∈ T and all k large enough so that nk > |u|,

θnk(u) =
∑

v∈C(u)

θnk(v),

and so the same holds for θ.

In particular, θ ∈ Θ(T, λ) and θ 6≡ 0.
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2 Galton-Watson processes

Choose a sequence of numbers {pk : k ≥ 0} satisfying pk ≥ 0 and
∑

k≥0 pk =
1. We will define a random tree recursively: set T0 = {∅}. Then for every
n ≥ 0, do the following: take independent random variables {Xu : u ∈ Tn}
with distribution P (Xu = k) = pk. Define Tn+1 by taking u ∈ Tn to have
Xu children in Tn+1. The resulting tree T is called a Galton-Watson tree.

It is sometimes instructive to consider just the generation sizes Zn :=
|Tn|. From the construction above, it is clear that the distribution of Zn is
characterized by the recursion

Zn+1 =

Zn∑
i=1

Xn,i,

where Xn,i are independent random variables with P (Xn,i = k) = pk.
Clearly, if Zn = 0 then Zm = 0 for all m ≥ n. We call the event

{∃n : Zn = 0} extinction; let q be its probability. If p0 = 0 then q = 0;
if p0 > 0 then q > 0 (because the probability of going extinct in the first
generation is p0). The next interesting question is whether q = 1 or q < 1.

Theorem 2.1. q = 1 if and only if p1 6= 1 and∑
k≥0

kpk ≤ 1.

In order to prove Theorem 2.1, we introduce the probability generating
function of pk:

f(s) =
∑
k≥0

pks
k,

which converges at least for s ∈ [0, 1] (taking the convention that 00 = 1).
Let f (n)(s) denote f composed with itself n times (i.e., f (0)(s) = s and
f (n+1)(s) = f(f (n)(s))).

Lemma 2.2. For all s ∈ [0, 1] and n ≥ 0, E[sZn+1 | Z1, . . . , Zn] = f(s)Zn.
Moreover, E[sZn ] = f (n)(s).
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Proof. To prove the first claim,

E[sZn+1 | Z1, . . . , Zn] = E
[ Zn∏
i=1

sXn,i
∣∣ Zn]

=

Zn∏
i=1

E[sXn,i ]

= f(s)Zn .

The second claim follows by induction: it is obvious for n = 0. For the
inductive step,

E[sZn+1 ] = EE[sZn+1 | Z1, . . . , Zn] = E[f(s)Zn ] = f(f (n)(s)) = f (n+1)(s).

Proof of Theorem 2.1. Assume that p0 > 0 and p1 < 1 (otherwise, the proof
is easy). Note that f is an increasing, convex function with f(0) = p0 > 0.
Moreover,

f ′(1) =
∑
k≥0

kpk

(which may be infinite). Some elementary calculus shows that the equation
f(s) = s has a solution in (0, 1) if and only if f ′(1) > 1. If this solution exists,
then it is unique and f (n)(0) converges to it; otherwise, f (n)(0) converges to
one. Since

q = Pr(Zn → 0) = lim
n→∞

Pr(Zn = 0) = lim
n→∞

E[0Zn ] = lim
n→∞

f (n)(0),

Theorem 2.1 follows.

2.1 The growth rate of a Galton-Watson tree

From now on, we will be interested in Galton-Watson trees that don’t go
extinct. Therefore, we will assume that m :=

∑
k≥0 kpk > 1 – these are

called supercritical Galton-Watson trees. One might expect that on the
event that if the tree doesn’t go extinct then it will grow exponentially with
rate m; indeed, this is more-or-less true:

Theorem 2.3 (Seneta-Hyde). If 1 < m < ∞ then there exists a sequence
cn > 0 such that

(i) limn→∞ Zn/cn converges a.s. to a finite limit;
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(ii) limZn/cn > 0 a.s. on the event that Zn does not go extinct; and

(iii) cn+1/cn → m.

Exercise 2.1. Prove that on the event of non-extinction, gr(T ) = m a.s.

Definition 2.4. A set P of trees is called an inherited property if

(i) P contains all finite trees; and

(ii) if T ∈P then T (u) ∈P for all u ∈ C(∅).

Lemma 2.5. If P is an inherited property then Pr(T ∈P) ∈ {q, 1}.

Proof.

Pr(T ∈P) = EPr(T ∈P | Z1) ≤ EPr(T (1), . . . , T (Z1) ∈P | Z1).

Since T (1), . . . , T (Z1) are independent and have the same distribution as T ,
the right hand side above is equal to f(Pr(T ∈P)). That is, a ≤ f(a) where
a = Pr(T ∈P). On the other hand, a ≥ q because T ∈P on the event of
extinction. By the properties of f that we saw before, a ∈ {q, 1}.

Proof of Theorem 2.3. Choose some s0 ∈ (q, 1) and define sn by sn+1 =
f−1(sn); then sn → 1. By Lemma 2.2, sZnn is a martingale; since it is also
bounded, it has an a.s. limit Y ∈ [0, 1]. Moreover, E[Y ] = s0 ∈ (q, 1).

Now define cn = −1/ log(sn). By l’Hôpital’s rule,

cn
cn−1

=
log(sn−1)

log(sn)
=

log(f(sn))

log(sn)
→ f ′(1) = m

as n→∞ and sn → 1. This proves (iii).
To prove (i), note that Y = lim e−Zn/cn , and so Zn/cn a.s. has a (possibly

infinite) limit. Since Y ≤ 1 and E[Y ] = s0 > q, it follows that Pr(Y > 0) =
Pr(limZn/cn <∞) > q. Since the property {lim |Tn|/cn <∞} is inherited,
it follows that Zn/cn a.s. has a finite limit; this proves (i).

Similarly, the property {|Tn|/cn → 0} is also inherited and so

Pr(Y = 1) = Pr(Zn/cn → 0) ∈ {q, 1}.

Since E[Y ] < 1, we must have Pr(Y = 1) = q; since Y = 1 on the event of
extinction, we must have Y < 1 a.s. on the event of non-extinction.
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2.2 The branching number of a Galton-Watson tree

Theorem 2.6. If T is a Galton-Watson tree with mean number of offspring
m ∈ (1,∞) then br(T ) = m a.s. on the event of non-extinction.

Proof. By Exercise 2.1, br(T ) ≤ gr(T ) = m. For the other direction, first
note that the property {br(T ) ≤ λ} is inherited. Hence, br(T ) is almost
surely equal to a constant on the event of non-extinction; let λ∗ be this
constant. Now take λ > λ∗ and consider the tree T ′ that we obtain by
the following procedure: for every u ∈ T independently, delete u and all its
descendents with probability 1−1/λ. Then T ′ is a Galton-Watson tree with
mean number of offspring m/λ (this is left as an exercise).

Since λ > br(T ) a.s., Theorem 1.11 implies that, for every ε > 0 there
exists a cutset Πε with ∑

u∈Πε

λ−|u| ≤ λε.

For u ∈ Πε, the event that u belongs to T ′ is the event that neither u nor any
of its ancestors were deleted from T ; conditioned on T , this has probability
λ−|u|−1. Hence

Pr(Πε ∩ T ′ 6= ∅ | T ) ≤
∑
u∈Πε

Pr(u ∈ T ′ | T ) =
∑
u∈Πε

λ−|u|−1 ≤ ε. (4)

Now consider the event that Πε ∩ T ′ is empty: letting n = maxu∈Πε |u|, we
see that every u ∈ T with |u| > n has some ancestor in Πε; hence u also
has some ancestor that was deleted in the construction of T ′. In particular,
T ′ is finite on the event that Πε ∩ T ′ = ∅. By taking ε → 0 in (4), we have
Pr(|T ′| < ∞) = 1. By Theorem 2.1 applied to T ′, we must have m/λ ≤ 1
and hence λ ≥ m. Since λ > λ∗ was arbitrary, it follows that λ∗ ≥ m.

Exercise 2.2. Prove that the random tree T ′ given in the proof of Theo-
rem 2.6 is a Galton-Watson tree. Write down its offspring distribution.

Exercise 2.3. Let pk = (1− p)kp for k ≥ 0 and let T be a Galton-Watson
tree with this offspring distribution. Show that conditioned on |T | = k, T is
uniformly distributed on the set of all trees of size k.

3 The broadcast process

Fix a tree T ; a configuration on T is a function σ : T → {−1, 1}. Given
a parameter λ ∈ [−1, 1], consider the following way of producing a random
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configuration: first, choose σ(∅) uniformly at random. Then, recursively
and independently for every u ∈ T and every v ∈ C(u), let σ(v) = σ(u)
with probability 1+λ

2 and σ(v) = −σ(u) otherwise. Equivalently, let {ξ(u) :
u ∈ T} be independent random variables in {−1, 1} where ξ(∅) is uniformly
random and Pr(ξ(u) = 1) = 1+λ

2 ; define σ(u) =
∏
v ξ(v) where the product

ranges over u and all of its ancestors.
One motivation for this process is as a model of evolution with mutation:

suppose you have a population with two types of individuals that reproduce
asexually. Usually, an individual has offspring of its own type, but sometimes
a random mutation occurs and the child will be of the opposite type. Given
such a model, it is natural to ask the following “reconstruction” problem:
if we observe a family tree descended from a single individual, but we only
observe the types of the descendents that are currently alive, then can we
say anything about the type of the original ancestor?

To make this question precise, we recall the definition of total variation
distance: for probability measures P and Q,

dTV(P,Q) = sup
A
|P(A)−Q(A)|,

where the supremum ranges over all measurable sets. Now, let P+
n denote

the distribution of σ(Tn) given σ(∅) = 1 and let P−n denote the distribution
of σ(Tn) given σ(∅) = −1. Suppose that we have a procedure for guessing
σ(∅) after seeing σ(Tn); let An ⊂ {−1, 1}Tn be the set of inputs for which
this procedure will guess that σ(Tn) = 1. The success probability of this
procedure is then

Pr(σ(Tn) ∈ An and σ(∅) = 1) + Pr(σ(Tn) 6∈ An and σ(∅) = −1)

=
1

2

(
P+
n (σ(Tn) ∈ An) + 1− P−n (σ(Tn) ∈ An)

)
≤ 1

2
+

1

2
dTV(P+

n ,P−n ).

On the other hand, if we choose An = {τ ∈ {−1, 1}Tn : P+
n (τ) > P−n (τ)} then

a similar calculation shows that the success probability of this procedure
is exactly 1

2 + 1
2dTV(P+

n ,P−n ). In other words, dTV(P+
n ,P−n ) quantifies how

accurately one can guess σ(∅) after observing σ(Tn). In particular, the
following theorem tells us when we can learn something non-negligible about
σ(∅) given σ(Tn) for large n.

Theorem 3.1. If λ2br(T ) > 1 then

lim inf
n→∞

dTV(P+
n ,P−n ) > 0.
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If λ2br(T ) < 1 then dTV(P+
n ,P−n )→ 0.

3.1 A reconstruction algorithm

Take a tree T , some λ ∈ [−1, 1] and a flow θ on T with |θ| = 1. For n ≥ 0
define

Sn =
∑
u∈Tn

λ−nθ(u)σ(u).

Lemma 3.2. For the Sn defined above, E[Sn | σ(∅)] = σ(∅) and

E[S2
n] = E[S2

n | σ(∅)] = λ2 + (1− λ2)
∑
|u|≤n

λ−2|u|θ2(u).

Before proving Lemma 3.2, let us see how it can be used to prove the
first claim of Theorem 3.1. that br(T ) > λ−2, there exists some flow θ with
|θ| = 1 and

λ2 + (1− λ2)
∑
u∈T

λ−2|u|θ2(u) = λ2 + (1− λ2)Eλ−2(θ) ≤ K <∞.

Applying Lemma 3.2 with this θ, we have E[S2
n] ≤ K for any n.

Now, let ν+ be the distribution of Sn conditioned on σ(∅) = 1 and let
ν− be the distribution of Sn conditioned on σ(∅) = −1. We recall another
characterization of total variation distance:

dTV(ν+, ν−) = inf
S+,S−

Pr(S+ 6= S−),

where the infimum runs over all couplings (S+, S−) of ν+ and ν−. Now,
Lemma 3.2 implies that for any such coupling, E[S+ − S−] = 2 and

E[(S+ − S−)2] ≤ 2E[(S+)2] + 2E[(S−)2] ≤ 4K.

Now, the Cauchy-Schwarz inequality gives

2 = E[(S+ − S−)1{S+ 6=S−}] ≤
√
E[(S+ − S−)2] Pr(S+ 6= S−),

and we conclude that Pr(S+ 6= S−) ≥ K−1. Hence dTV(ν+, ν−) ≥ K−1;
since ν+ and ν− are push-forwards of P+

n and P−n respectively, we conclude
that

dTV(P+
n ,P−n ) ≥ 1

K
,

which is bounded away from zero as n → ∞. This proves the first part of
Theorem 3.1.
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Proof of Lemma 3.2. If u is the parent of v then E[σ(v) | σ(u)] = λσ(u). By
induction,

E[σ(u) | σ(∅)] = λ|u|σ(∅).
Summing over u ∈ Tn, E[Sn | σ(∅)] = σ(∅)

∑
u∈Tn θ(u) = σ(∅), as claimed.

In order to compute the second moment, we introduce the notation u∧v
to be the most recent common ancestor of u and v. By the representation
of the broadcast process as a product of independent variables, we have
E[σ(u)σ(v)] = λ|u|+|v|−2|u∧v|. Expanding the square,

E[S2
n] =

∑
u,v∈Tn

λ−2|u∧v|θ(u)θ(v)

Let A(u) denote the set consisting of u and all of its ancestors; note that
λ−2|u| = λ2 + (1− λ2)

∑
v∈A(u) λ

−2|v|. Since
∑

u,v∈Tn θ(u)θ(v) = |θ|2 = 1,

E[S2
n] =

∑
u,v∈Tn

λ−2|u∧w|θ(u)θ(v)

= λ2 + (1− λ2)
∑

u,v∈Tn

∑
w∈A(u∧v)

λ−2|w|θ(u)θ(v).

Changing the order of summation in the inner sum,∑
u,v∈Tn

∑
w∈A(u∧v)

λ−2|w|θ(u)θ(v) =
∑
|w|≤n

λ−2|w|
∑

u,v∈Tn

1{w∈A(u∧v)}θ(u)θ(v)

=
∑
|w|≤n

λ−2|w|
∑

u,v∈Tn

1{w∈A(u)}1{w∈A(v)}θ(u)θ(v)

=
∑
|w|≤n

λ−2|w|

(∑
u∈Tn

1{w∈A(u)}θ(u)

)2

=
∑
|w|≤n

λ−2|w|θ2(w)

3.2 Non-reconstruction

For now, suppose that T is a finite tree, and fix some set L ⊂ T of “leaves.”
For a labelling σ : T → {−1, 1}, write σ(L) for {σ(u) : u ∈ L}. Let P+

L

denote the distribution of σ(L) given that σ(∅) = 1 and let P−L denote the
distribution of σ(L) given that σ(∅) = −1. Let PL = 1

2(P+
L + P−L ) be the

marginal distribution of σ(L). Note that if L = Tn then P+
Tn

is the same as
the distribution P+

n that we defined before. Define the magnetization by

XT,L = E[σ(∅) | σ(L)].

14



Lemma 3.3.

1.
P+
L

PL = 1 +XT,L

2.
P−L
PL = 1−XT,L

3. E+[XT,L] = −E−[XT,L] = E+[X2
T,L] = E−[X2

T,L].

Lemma 3.3 allow us to see the link between magnetization and total
variation distance: by the first two parts of the lemma,

dTV(P+
n ,P−n ) =

1

2
E
∣∣∣∣P+

n

Pn
− P−n

Pn

∣∣∣∣ = E|XT,Tn |.

In particular, dTV(P+
n ,P−n )→ 0 if and only if XT,Tn → 0 in probability. By

the third part of the lemma, this is equivalent to E+[XT,Tn ]→ 0.

Proof of Lemma 3.3. By Bayes’ formula, for any τ : L→ {−1, 1}

P+
L (τ)

PL(τ)
=

P(σ(∅) = 1 | σ(L) = τ)

P(σ(∅) = 1)
= 2P(σ(∅) = 1 | σ(L) = τ).

On the other hand,

XT,L = P(σ(∅) = 1 | σ(L))−P(σ(∅) = −1 | σ(L)) = 2P(σ(∅) = 1 | σ(L))−1.

This proves the first claim, and the proof of the second is analogous.
For the third claim, note that the distribution of XT,L under P+ is the

same as the distribution of −XT,L under P−; the first and third equalities
follow, and it also follows that E[X2

T,L] = E+[X2
T,L]. Therefore, it suffices to

show that E+[XT,L] = E[X2
T,L]. By the first claim,

E+[XT,L] = E
[
XT,L

P+
L

PL

]
= E[XT,L(1 +XT,L)] = E[XT,L] + ET,L[X2

T,L].

Finally, note that ET,L[XT,L] = 1
2(E+

T,L[XT,L] + E−T,L[XT,L]) = 0.

The main step to complete the proof of Theorem 3.1 is to study how
XT,L changes as we change T . Therefore, let T1 and T2 be two trees, and
let L1 and L2 be subsets of T1 and T2 respectively. Let T ′2 be T2 with a new
root added as a parent of the original root, and let T be the tree where we
“merge” T1 and T ′2, identifying their roots (see Figure 1). Take L = L1∪L2.
Our goal is to study the relationship between XT1,L1 , XT2,L2 , and XT,L. To
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Figure 1:
The tree merging operation.

simplify the notation, we will call these X1, X2, and X respectively. We
write ∅ for the root of T (which is also the root of T1 and the root of T ′2
and ∅2 for the root of T2. Let P+

2 be the distribution of σ(T2) conditioned
on ∅2 = +, and define X ′2 = XT ′2,L

′
2
.

Lemma 3.4. X ′2 = λX2. Moreover, E+[X ′2] = λ2E+
2 [X2] and E+[X ′22 ] =

λ2E+
2 [X2].

Proof. Recall from Lemma 3.3 that

1 +X ′2 =
P+(σ(L2))

P(σ(L2))

Next, condition on σ(∅2) to obtain

1 +X ′2 =
P+(σ(∅2) = 1)P+

2 (σ(L2)) + P+(σ(∅2) = −1)P−2 (σ(L2))

P(σ(L2))
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Since P+(σ(∅2) = τ) = (1 + τλ)/2, this can be rearranged to give

1 +X ′2 =
(1 + λ)P+

2 (σ(L2)) + (1− λ)P−2 (σ(L2))

2P(σ(L2))

= 1 + λ
P+

2 (σ(L2))− P−2 (σ(L2))

2P(σ(L2))

= 1 + λX2.

This proves the first claim. For the second, condition on σ(∅2) to obtain

E+[X2] =
1 + λ

2
E+

2 [X2] +
1− λ

2
E−2 [X2] = λE+

2 [X2],

where the second equality comes from the fact (Lemma 3.3, part 3) that
E+

2 [X2] = −E−2 [X2]. Applying our first claim gives E+[X ′2] = λE+[X2] =
λ2E+

2 [X2]. The final claim is very similar:

E+[X2
2 ] =

1 + λ

2
E+

2 [X2
2 ] +

1− λ
2

E−2 [X2
2 ] = E+

2 [X2
2 ] = E+

2 [X2],

where both the second and third inequalities follow from Lemma 3.3. Ap-
plying the first claim gives E+[X ′22 ] = λ2E+[X2] = λ2E+

2 [X2].

Lemma 3.5. X =
X1 +X ′2
1 +X2X ′2

.

Proof. By Lemma 3.3 and the fact that σ(L1) and σ(L2) are independent
given σ(∅),

1+X =
P+(σ(L))

P(σ(L))
=

P+(σ(L1))P+(σ(L2))

P(σ(L))
=

P(σ(L1))P(σ(L2))

P(σ(L))
(1+X1)(1+X ′2).

On the other hand, since σ(L1) and σ(L2) are independent once we condition
on σ(∅),

P(σ(L))

P(σ(L1))P(σ(L2))
=

P+(σ(L)) + P−(σ(L))

2P(σ(L1))P(σ(L2))

=
P+(σ(L1))P+(σ(L2)) + P−(σ(L1))P−(σ(L2))

2P(σ(L1))P(σ(L2))

=
(1 +X1)(1 +X ′2) + (1−X1)(1−X ′2)

2
= 1 +X1X

′
2.

Combining these two calculations and rearranging proves the claim.
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Figure 2:
Building a tree by adding its children one-by-one.

By combining Lemma 3.5 with the formula r
1+r = 1 − r + r2

1+r and the
fact that |X| ≤ 1,

X = X1 +X ′2 − (X1 +X ′2)X1X
′
2 + (X1X

′
2)2X

≤ X1 +X ′2 − (X1 +X ′2)X1X
′
2 + (X1X

′
2)2. (5)

Define x = E+[X], x1 = E+[X1], and x2 = E+
2 [X2]. Recall from Lemma 3.3

that E+[X2
1 ] = E+[X2

1 ] = x1 and recall from Lemma 3.4 that E+[X ′2] =
E+[X ′22 ] = λ2x2. Taking the expectation of (5) with respect to P+ (and
recalling that X1 and X ′2 are independent under P+),

x ≤ x1 + λ2x2 − λ2x1x2 ≤ x1 + λ2x2. (6)

From this, we can obtain a recursion for the expected magnetization of
the root in terms of the magnetizations of its children: given a tree T and
some L ⊂ T , suppose that 0, . . . , k − 1 are the children of the root. Let T≤i
be the tree obtained from T by deleting T (i+1), . . . , T (k−1) (see Figure 2).
Let L≤i = T≤i ∩L and L(i) = T (i) ∩L, and let Pu,+ be the distribution of σ
given that σ(u) = 1.

Now apply Lemma 3.4 with T2 = T (0) and T ′2 = T≤0: this gives

E+[XT≤0,L≤0
] = λ2E0,+[XT (0),L(0) ].

Then apply (6) with T1 = T≤0 and T2 = T (1): this gives

E+[XT≤1,L≤1
] ≤ λ2E0,+[XT (0),L(0) ] + λ2E1,+[XT (1),L(1) ].
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Repeating the last step, we obtain

E+[XT,L] = E+[XT≤k−1,L≤k−1
] ≤ λ2

k−1∑
i=0

Ei,+[XT (i),L(i) ]. (7)

Now we are ready to complete the proof of Theorem 3.1. Assuming that
br(T ) < λ−2, for every ε > 0 there exists a minimal cutset Π such that∑

u∈Π λ
2|u| ≤ ε. Then take n large enough so that |u| < n for all u ∈ Π.

Taking L = Tn, L(u) = Tn∩T (u), and applying (7) recursively on T , we have

E+[XT,Tn ] ≤
∑
u∈Π

λ2|u|Eu,+[XT (u),L(u) ] ≤
∑
u∈Π

λ2|u| ≤ ε.

Since ε > 0 was arbitrary, we conclude that E+[XT,Tn → 0] as n→∞. This
completes the proof of Theorem 3.1.

Exercise 3.1. Theorem 3.1 doesn’t make any claims about what happens
when λ2br(T ) = 1. It turns out that both behaviors are possible.

(a) Show that for the k-ary tree, if λ2br(T ) = 1 then dTV(P+
n ,P−n ) → 0.

(Hint: imitate the last part of the proof of Theorem 3.1, but use the
left-hand inequality of (6).)

(b) Construct a tree T such that lim inf dTV(P+
n ,P−n ) > 0 when λ2br(T ) = 1.

(Hint: Exercise 1.3.)
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