The height of a random leaf in conditioned Galton-Watson tree

Douglas Rizzolo
Rough Notes

1 Leaves in Binary Trees

Let T_{n} be a uniformly random rooted ordered binary tree with n leaves (equivalently, $2 n-1$ verticles) and, conditionally given T_{n}, let L_{n} be a uniformly random vertex of T_{n}. This lecture is devoted to the answering the question, what is the height of U_{n} ?

Our goal is to prove the following result:
Theorem 1. If $\left(x_{n}\right)_{n \geq 0}$ is a sequence of integers such that $x_{n} / \sqrt{n} \rightarrow x \in(0, \infty)$ then

$$
\lim _{n \rightarrow \infty} \sqrt{n} \mathbb{P}\left(h t\left(L_{n}\right)=k_{n}\right)=\frac{x}{2} \exp \left(-\frac{x^{2}}{4}\right)
$$

This implies that

$$
\frac{1}{\sqrt{n}} h t\left(L_{n}\right) \xrightarrow{d} \text { Rayleigh }(\sqrt{2}) .
$$

There are many proofs of this, but we will use a generating function argument.
Proof. Let B_{n} be the number of binary trees with n leaves and let

$$
B(z)=\sum_{n=1}^{\infty} B_{n} z^{n}
$$

Decomposing at the root, we see that for $n \geq 1, C_{n}$ satisfies the relationship

$$
B_{n}=\sum_{k=1}^{n-1} B_{k} B_{n-k}
$$

Thus we identify $B_{n}=C_{n-1}$, where C_{n} is the n 'th Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Let \mathcal{T}_{n} be the set of rooted ordered binary tree with n leaves and let $\mathcal{T}=\cup_{n} \mathcal{T}_{n}$. Note that

$$
B(z)=\sum_{\mathbf{t} \in \mathcal{T}} z^{|\mathbf{t}|}
$$

where $|\mathbf{t}|$ is the number of leaves of \mathbf{t}. Let $\theta_{k}(\mathbf{t})$ be the number of vertices of \mathbf{t} at height k and let

$$
\Theta_{k}(z)=\sum_{\mathbf{t} \in \mathcal{T}} \theta_{k}(\mathbf{t}) z^{|\mathbf{t}|}
$$

Observe that

$$
\sqrt{n} \mathbb{P}\left(h t\left(L_{n}\right)=k_{n}\right)=\sqrt{n} \sum_{\mathbf{t} \in \mathcal{T}_{n}} \frac{\theta_{k}(\mathbf{t})}{n} \frac{1}{B_{n}}=n^{-1 / 2} \mathbb{E}\left(\theta_{k}\left(T_{n}\right)\right)=\frac{n^{-1 / 2}\left[z^{n}\right] \Theta_{k}(z)}{\left[z^{n}\right] B(z)} .
$$

Let \mathbf{t}_{l} and \mathbf{t}_{r} be the left and right subtrees attached to the root of \mathbf{t}. The for $k \geq 1$ we have

$$
\begin{aligned}
\Theta_{k}(z)=\sum_{\mathbf{t} \in \mathcal{T}} \theta_{k}(\mathbf{t}) z^{|\mathbf{t}|} & =\sum_{\mathbf{t} \in \mathcal{T}}\left(\theta_{k-1}\left(\mathbf{t}_{l}\right)+\theta_{k-1}\left(\mathbf{t}_{r}\right)\right) z^{\left|\mathbf{t}_{l}\right|+\left|\mathbf{t}_{r}\right|} \\
& =\sum_{\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \in \mathcal{T}^{2}}\left(\theta_{k-1}\left(\mathbf{t}_{1}\right)+\theta_{k-1}\left(\mathbf{t}_{2}\right)\right) z^{\left|\mathbf{t}_{1}\right|+\left|\mathbf{t}_{2}\right|} \\
& =\sum_{\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \in \mathcal{T}^{2}} \theta_{k-1}\left(\mathbf{t}_{1}\right) z^{\left|\mathbf{t}_{1}\right|+\left|\mathbf{t}_{2}\right|}+\sum_{\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \in \mathcal{T}^{2}} \theta_{k-1}\left(\mathbf{t}_{2}\right) z^{\left|\mathbf{t}_{1}\right|+\left|\mathbf{t}_{2}\right|} \\
& =2 B(z) \Theta_{k-1}(z) .
\end{aligned}
$$

Continuing inductively, and using the fact that $\Theta_{0}(z)=z$ we find that

$$
\Theta_{k}(z)=z(2 B(z))^{k}=2^{k} z B(z)^{k}
$$

Thus we must analyze $\left[z^{n}\right] B(z)^{k}$, the coefficient of z^{n} in $B(z)^{k}$. Note that

$$
B(z)^{k}=\sum_{n=0}^{\infty} \sum_{\substack{\left(n_{1}, \ldots, n_{k}\right) \\ n_{1}+\cdots+n_{k}=n}} B_{n_{1}} \cdots B_{n_{k}} z^{n}
$$

Equivalently,

$$
\left[z^{n}\right] B(z)^{k}=\sum_{\substack{\left(n_{1}, \ldots, n_{k}\right) \\ n_{1}+\cdots+n_{k}=n}} B_{n_{1}} \cdots B_{n_{k}}
$$

is the number of ordered forests of k rooted ordered binary trees with a total of n leaves among the k trees. To work with this, we use a different interpretation of the Catalan numbers. In particular, we use the fact that $B_{n}=C_{n-1}$ is the number of rooted ordered trees with n vertices. There is a very nice combinatorial proof of this relationship. The map in Figure 1 gives a bijection from rooted ordered binary trees with n leaves to rooted ordered trees with n vertices.

Consequently, $\left[z^{n}\right] B(z)^{k}$ is also the number of forests of k rooted ordered trees with a total of n vertices among the k trees. Thus, if we take $\hat{T}_{1}, \ldots, \hat{T}_{k}$ to be Galton-Watson trees with Geometric(1/2)-offspring distribution and let $\# \mathbf{t}$ be the number of vertices in the tree \mathbf{t}, we have

$$
\frac{1}{2^{2 n-k}}\left[z^{n}\right] B(z)^{k}=\mathbb{P}\left(\# \hat{T}_{1}+\cdots+\# \hat{T}_{k}=n\right)
$$

Figure 1: A binary tree \mathbf{t} and its image under $\mathbf{t} \mapsto \hat{\mathbf{t}}$
Let X_{1}, X_{2}, \ldots be i.i.d. Geometric $(1 / 2)$ random variables and let $S_{n}=X_{1}+\cdots+X_{n}$. By the Otter-Dwass formula we have

$$
\mathbb{P}\left(\# \hat{T}_{1}+\cdots+\# \hat{T}_{k}=n\right)=\frac{k}{n} \mathbb{P}\left(S_{n}-n=-k\right)=\frac{k}{n}\binom{2 n-k-1}{n-k} \frac{1}{2^{n}}
$$

Exercise 1. It follows from the above that $\left[z^{n}\right] B(z)^{k}=\frac{k}{n}\binom{2 n-k-1}{n-k}$. Give a direct combinatorial proof of this.

Since $\operatorname{var}\left(X_{1}\right)=2$ and the distribution of $X_{1}-1$ is aperiodic, the Local Central Limit Theorem implies that

$$
\sup _{k \in \mathbb{Z}}\left|\sqrt{2 n} \mathbb{P}\left(S_{n}-n=k\right)-\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{k^{2}}{4}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Consequently, if $k_{n} / \sqrt{n} \rightarrow x \in(0, \infty)$, we have

$$
\sqrt{2 n} \mathbb{P}\left(S_{n}-n=k_{n}\right) \sim \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{k_{n}^{2}}{4 n}\right) \sim \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{4}\right)
$$

Exercise 2. Prove the above relationship directly from Stirling's formula instead of using the local central limit theorem.

Consequently, we have

$$
\left[z^{n}\right] \Theta_{k_{n}}(z)=2^{k_{n}}\left[z^{n-1}\right] B(z)^{k_{n}} \sim 2^{2(n-1)} \frac{x}{2 \sqrt{\pi} n} \exp \left(-\frac{x^{2}}{4}\right) .
$$

Using Stirling's formula, or the $k=1$ case of the above argument, we see that

$$
\left[z^{n}\right] B(z) \sim 2^{2(n-1)} \frac{1}{n^{3 / 2} \sqrt{\pi}}
$$

Combining all of the above, we see that

$$
\sqrt{n} \mathbb{P}\left(h t\left(L_{n}\right)=k_{n}\right)=\frac{n^{-1 / 2}\left[z^{n}\right] \Theta_{k}(z)}{\left[z^{n}\right] B(z)} \sim \frac{2^{2(n-1)} \frac{x}{2 \sqrt{\pi} n^{3 / 2}} \exp \left(-\frac{x^{2}}{4}\right)}{2^{2(n-1)} \frac{1}{n^{3 / 2} \sqrt{\pi}}}=\frac{x}{2} \exp \left(-\frac{x^{2}}{4}\right),
$$

as desired.
Exercise 3. Let W_{n} be a uniformly random vertex chosen from T_{n}. Using a similar argument as above, find

$$
\lim _{n \rightarrow \infty} \sqrt{n} \mathbb{P}\left(h t\left(W_{n}\right)=k_{n}\right),
$$

when $k_{n} / \sqrt{n} \rightarrow x \in(0, \infty)$.

2 Beyond Binary Trees

A modification of the above approach works in a more general case. Let μ be a critical offspring distribution with finite non-zero variance σ^{2}, and let T be a μ-Galton-Watson tree. Suppose that for sufficiently large $n, \mathbb{P}(|T|=n)>0$, and for all such n let T_{n} be distributed like T conditioned to have n leaves. We let

$$
\phi(z)=\sum_{n=0}^{\infty} \mu(n) z^{n}
$$

and

$$
B(z)=\sum_{\mathbf{t} \in \mathcal{T}} \mathbb{P}(T=\mathbf{t}) z^{|t|}
$$

so that $\left[z^{n}\right] B(z)=\mathbb{P}(|T|=n)$. In this case, we find that

$$
\Theta_{k}(z)=z\left(\phi^{\prime}(B(z))\right)^{k} .
$$

One may then argue as above, but this is slightly complicated by the fact that we don't have a replacement for \hat{T}. That is, we need to find an offspring distribution ν such that if \hat{T} is a ν-Galton-Watson tree then $\mathbb{P}(|T|=n)=\mathbb{P}(\# \hat{T}=n)$. This can be done and in fact, recalling the map \wedge above, \hat{T} is a Galton Watson tree with offspring distribution ν, which is the distribution of

$$
Y=1+\sum_{i=1}^{\inf \left\{i: X_{i}=0\right\}}\left(X_{i}-1\right),
$$

where X_{1}, X_{2}, \ldots are i.i.d with distribution μ. Moreover, from Wald's equations, give $\mathbb{E}(Y)=$ 1 and $\operatorname{var}(Y)=\sigma^{2} \mathbb{E} \inf \left\{i: X_{i}=0\right\}=\sigma^{2} / \mu(0)$.

Moreover, we must interpret $\phi^{\prime}(B(z))$ probabilistically. In the binary case, $\phi(z)=\frac{1}{2}+\frac{1}{2} z^{2}$, so that $\phi^{\prime}(z)=1$, and there is nothing to do. However, the situation is more complicated in the general case. In the general case, we have that

$$
\phi^{\prime}(z)=\sum_{n=1}^{\infty} n \mu(n) z^{n-1}
$$

Figure 2: A tree \mathbf{t} and its image under $\mathbf{t} \mapsto \hat{\mathbf{t}}$

Since μ has mean 1 , we see that $\phi^{\prime}(1)=1$. Taking $\bar{\mu}(n)=n \mu(n)$, we have that $\bar{\mu}$ is a probability distribution. It is called the size-biased distribution of μ. Let $\hat{T}_{1}, \hat{T}_{2}, \ldots$ be i.i.d ν-Galton-Watson trees and let N be an independent random variable with distribution $\hat{\mu}$. Letting

$$
Z=\sum_{i=1}^{N} \# \hat{T}_{i}
$$

we find that

$$
\gamma(z)=\sum_{n=1}^{\infty} \mathbb{P}(Z=n) z^{n}=\phi^{\prime}(B(z))
$$

Thus, if Z_{1}, Z_{2}, \ldots are i.i.d with distribution Z then

$$
\left[z^{n}\right] \phi^{\prime}(B(z))^{k}=\mathbb{P}\left(Z_{1}+\cdots+Z_{k}=n\right)
$$

But, if N_{1}, N_{2}, \ldots are i.i.d distributed like N, independent also of the \hat{T}_{i}, then

$$
\mathbb{P}\left(Z_{1}+\cdots+Z_{k}=n\right)=\mathbb{P}\left(\sum_{i=1}^{N_{1}+\cdots+N_{k}} \# \hat{T}_{i}=n\right)
$$

We are now left with applying a random index version of the Otter-Dwass formula, followed by a random index version of the local limit theorem. The only issues that arise in this application are resolved by using the Law of Large Numbers, which yields

$$
\frac{1}{n} \sum_{j=1}^{n} N_{j} \underset{n \rightarrow \infty}{\text { a.s. }} \mathbb{E} N_{1}=1+\sigma^{2} .
$$

Exercise 4. Fill in the details of, and complete, the above argument.

