
The height of a random leaf in conditioned
Galton-Watson tree

Douglas Rizzolo
Rough Notes

1 Leaves in Binary Trees

Let Tn be a uniformly random rooted ordered binary tree with n leaves (equivalently, 2n− 1
verticles) and, conditionally given Tn, let Ln be a uniformly random vertex of Tn. This
lecture is devoted to the answering the question, what is the height of Un?

Our goal is to prove the following result:

Theorem 1. If (xn)n≥0 is a sequence of integers such that xn/
√
n→ x ∈ (0,∞) then

lim
n→∞

√
nP(ht(Ln) = kn) =

x

2
exp

(
−x

2

4

)
.

This implies that
1√
n

ht(Ln)
d−→ Rayleigh

(√
2
)
.

There are many proofs of this, but we will use a generating function argument.

Proof. Let Bn be the number of binary trees with n leaves and let

B(z) =
∞∑
n=1

Bnz
n.

Decomposing at the root, we see that for n ≥ 1, Cn satisfies the relationship

Bn =
n−1∑
k=1

BkBn−k.

Thus we identify Bn = Cn−1, where Cn is the n’th Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

Let Tn be the set of rooted ordered binary tree with n leaves and let T = ∪nTn. Note
that

B(z) =
∑
t∈T

z|t|
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where |t| is the number of leaves of t. Let θk(t) be the number of vertices of t at height k
and let

Θk(z) =
∑
t∈T

θk(t)z
|t|.

Observe that

√
nP(ht(Ln) = kn) =

√
n
∑
t∈Tn

θk(t)

n

1

Bn

= n−1/2E(θk(Tn)) =
n−1/2[zn]Θk(z)

[zn]B(z)
.

Let tl and tr be the left and right subtrees attached to the root of t. The for k ≥ 1 we have

Θk(z) =
∑
t∈T

θk(t)z
|t| =

∑
t∈T

(θk−1(tl) + θk−1(tr))z
|tl|+|tr|

=
∑

(t1,t2)∈T 2

(θk−1(t1) + θk−1(t2))z
|t1|+|t2|

=
∑

(t1,t2)∈T 2

θk−1(t1)z
|t1|+|t2| +

∑
(t1,t2)∈T 2

θk−1(t2)z
|t1|+|t2|

= 2B(z)Θk−1(z).

Continuing inductively, and using the fact that Θ0(z) = z we find that

Θk(z) = z(2B(z))k = 2kzB(z)k.

Thus we must analyze [zn]B(z)k, the coefficient of zn in B(z)k. Note that

B(z)k =
∞∑
n=0

∑
(n1,...,nk)

n1+···+nk=n

Bn1 · · ·Bnk
zn.

Equivalently,

[zn]B(z)k =
∑

(n1,...,nk)
n1+···+nk=n

Bn1 · · ·Bnk
,

is the number of ordered forests of k rooted ordered binary trees with a total of n leaves
among the k trees. To work with this, we use a different interpretation of the Catalan
numbers. In particular, we use the fact that Bn = Cn−1 is the number of rooted ordered
trees with n vertices. There is a very nice combinatorial proof of this relationship. The map
in Figure 1 gives a bijection from rooted ordered binary trees with n leaves to rooted ordered
trees with n vertices.

Consequently, [zn]B(z)k is also the number of forests of k rooted ordered trees with a
total of n vertices among the k trees. Thus, if we take T̂1, . . . , T̂k to be Galton-Watson trees
with Geometric(1/2)-offspring distribution and let #t be the number of vertices in the tree
t, we have

1

22n−k [zn]B(z)k = P
(

#T̂1 + · · ·+ #T̂k = n
)
.
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Figure 1: A binary tree t and its image under t 7→ t̂

Let X1, X2, . . . be i.i.d. Geometric(1/2) random variables and let Sn = X1 + · · · + Xn. By
the Otter-Dwass formula we have

P
(

#T̂1 + · · ·+ #T̂k = n
)

=
k

n
P(Sn − n = −k) =

k

n

(
2n− k − 1

n− k

)
1

2n
.

Exercise 1. It follows from the above that [zn]B(z)k = k
n

(
2n−k−1
n−k

)
. Give a direct combina-

torial proof of this.

Since var(X1) = 2 and the distribution of X1 − 1 is aperiodic, the Local Central Limit
Theorem implies that

sup
k∈Z

∣∣∣∣√2nP(Sn − n = k)− 1√
2π

exp

(
−k

2

4

)∣∣∣∣ −→n→∞ 0.

Consequently, if kn/
√
n→ x ∈ (0,∞), we have

√
2nP(Sn − n = kn) ∼ 1√

2π
exp

(
−k

2
n

4n

)
∼ 1√

2π
exp

(
−x

2

4

)
.

Exercise 2. Prove the above relationship directly from Stirling’s formula instead of using
the local central limit theorem.

Consequently, we have

[zn]Θkn(z) = 2kn [zn−1]B(z)kn ∼ 22(n−1) x

2
√
πn

exp

(
−x

2

4

)
.

Using Stirling’s formula, or the k = 1 case of the above argument, we see that

[zn]B(z) ∼ 22(n−1) 1

n3/2
√
π
.
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Combining all of the above, we see that

√
nP(ht(Ln) = kn) =

n−1/2[zn]Θk(z)

[zn]B(z)
∼

22(n−1) x
2
√
πn3/2 exp

(
−x2

4

)
22(n−1) 1

n3/2
√
π

=
x

2
exp

(
−x

2

4

)
,

as desired.

Exercise 3. Let Wn be a uniformly random vertex chosen from Tn. Using a similar argu-
ment as above, find

lim
n→∞

√
nP(ht(Wn) = kn),

when kn/
√
n→ x ∈ (0,∞).

2 Beyond Binary Trees

A modification of the above approach works in a more general case. Let µ be a critical
offspring distribution with finite non-zero variance σ2, and let T be a µ-Galton-Watson tree.
Suppose that for sufficiently large n, P(|T | = n) > 0, and for all such n let Tn be distributed
like T conditioned to have n leaves. We let

φ(z) =
∞∑
n=0

µ(n)zn

and
B(z) =

∑
t∈T

P(T = t)z|t|,

so that [zn]B(z) = P(|T | = n). In this case, we find that

Θk(z) = z(φ′(B(z)))k.

One may then argue as above, but this is slightly complicated by the fact that we don’t
have a replacement for T̂ . That is, we need to find an offspring distribution ν such that if
T̂ is a ν-Galton-Watson tree then P(|T | = n) = P(#T̂ = n). This can be done and in fact,
recalling the map ∧ above, T̂ is a Galton Watson tree with offspring distribution ν, which
is the distribution of

Y = 1 +

inf{i:Xi=0}∑
i=1

(Xi − 1),

whereX1, X2, . . . are i.i.d with distribution µ. Moreover, from Wald’s equations, give E(Y ) =
1 and var(Y ) = σ2E inf{i : Xi = 0} = σ2/µ(0).

Moreover, we must interpret φ′(B(z)) probabilistically. In the binary case, φ(z) = 1
2
+ 1

2
z2,

so that φ′(z) = 1, and there is nothing to do. However, the situation is more complicated in
the general case. In the general case, we have that

φ′(z) =
∞∑
n=1

nµ(n)zn−1.
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Figure 2: A tree t and its image under t 7→ t̂

Since µ has mean 1, we see that φ′(1) = 1. Taking µ̄(n) = nµ(n), we have that µ̄ is a
probability distribution. It is called the size-biased distribution of µ. Let T̂1, T̂2, . . . be i.i.d
ν-Galton-Watson trees and let N be an independent random variable with distribution µ̂.
Letting

Z =
N∑
i=1

#T̂i,

we find that

γ(z) =
∞∑
n=1

P(Z = n)zn = φ′(B(z)).

Thus, if Z1, Z2, . . . are i.i.d with distribution Z then

[zn]φ′(B(z))k = P(Z1 + · · ·+ Zk = n).

But, if N1, N2, . . . are i.i.d distributed like N , independent also of the T̂i, then

P (Z1 + · · ·+ Zk = n) = P

(
N1+···+Nk∑

i=1

#T̂i = n

)
.

We are now left with applying a random index version of the Otter-Dwass formula, followed
by a random index version of the local limit theorem. The only issues that arise in this
application are resolved by using the Law of Large Numbers, which yields

1

n

n∑
j=1

Nj
a.s.−→
n→∞

EN1 = 1 + σ2.

Exercise 4. Fill in the details of, and complete, the above argument.
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