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Introduction 

n  Cluster analysis (clustering) 
n  Given a set of objects,  group similar data according to 

the characteristics into clusters 
n  Cluster: A collection of data objects 

n  similar (or related) to one another within the same group 
n  dissimilar (or unrelated) to the objects in other groups 

n  How to identify the similarity? 
n  How to identify the number of clusters? 
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Introduction 

n  Clustering is embedded in human naturally 
n  Group animals, plants 
n  Group students 
n  Group customers 
n  Facebook groups 
n  Interest groups 
n  … 
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Clustering vs Classification 

n  Clustering 
n  No predefined classes (unknown number of clusters) 
n  Unlabeled data objects 
n  Unsupervised learning 

n  Classification 
n  Predefined classes 
n  Labeled data objects 
n  Predict/identify the class of an unlabeled object 
n  Supervised learning 
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Clustering applications 

n  Image Processing and Pattern Recognition 
n  Spatial Data Analysis  

n  Create thematic maps in GIS by clustering feature 
spaces 

n  Detect spatial clusters or for other spatial mining tasks 
n  Economic Science (especially market research) 
n  WWW 

n  Document classification 
n  Cluster Weblog data to discover groups of similar 

access patterns 
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Clustering Applications 

n  Marketing: Help marketers discover distinct groups in their customer 
bases, and then use this knowledge to develop targeted marketing 

programs 

n  Land use: Identification of areas of similar land use in an earth 

observation database 

n  Insurance: Identifying groups of motor insurance policy holders with a 

high average claim cost 

n  City-planning: Identifying groups of houses according to their house 

type, value, and geographical location 

n  Earth-quake studies: Observed earth quake epicenters should be 

clustered along continent faults 
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Categorization of Clustering Approaches 

n  Partitioning approach:  
n  Construct various partitions and then evaluate them by some 

criterion, e.g., minimizing the sum of square errors 
n  Typical methods: k-means, k-medoids, CLARANS 

n  Hierarchical approach:  
n  Create a hierarchical decomposition of the set of data (or objects) 

using some criterion 
n  Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON 

n  Density-based approach:  
n  Based on connectivity and density functions 
n  Typical methods: DBSACN, OPTICS, DenClue 

n  Grid-based approach:  
n  based on a multiple-level granularity structure 
n  Typical methods: STING, WaveCluster, CLIQUE 
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Major Clustering Approaches (II) 

n  Model-based:  
n  A model is hypothesized for each of the clusters and tries to find the 

best fit of that model to each other 
n  Typical methods: EM, SOM, COBWEB 

n  Frequent pattern-based: 
n  Based on the analysis of frequent patterns 
n  Typical methods: p-Cluster 

n  User-guided or constraint-based:  
n  Clustering by considering user-specified or application-specific 

constraints 
n  Typical methods: COD (obstacles), constrained clustering 

n  Link-based clustering: 
n  Objects are often linked together in various ways 
n  Massive links can be used to cluster objects: SimRank, LinkClus 



Flat clustering 
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Data object representation 

n  A set/vector of features/attributes 
n  Person: name, age, sex, job, … 
n  Text: set of distinct words 
 
 

n  Similarity  
n  The distance: the smaller the more similar 
n  The similarity: the bigger the more similar 
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K-means Clustering 

n  Number of clusters (k) is known in advance 

n  Clusters are represented by the centroid of the documents that belong to 
that cluster 

n  Cluster membership is determined by the most similar cluster centroid 
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The K-Means Clustering Method  

n  Example 
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K-means Clustering Discussion 

n  In step 2 documents are moved between clusters in order 
to maximize the intra-cluster similarity 

n  The clustering maximizes the criterion function (a measure 
for evaluating clustering quality) 

n  In distance-based k-means clustering the criterion function 
is the sum of squared errors (based on Euclidean distance 
and means) 

n  For k-means clustering of documents a function based on 
centroids and similarity is used 
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K-means Clustering Discussion (cont’d) 

n  Clustering that maximizes this function is called minimum 
variance clustering 

n  K-means algorithm produces minimum variance clustering, 
but does not guarantee that it always finds the global 
maximum of the criterion function 

n  After each iteration the value of J increases, but it may 
converge to a local maximum 

n  The result greatly depends on the initial choice of cluster 
centroids 



Sample data 
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K-means Clustering Example (result) 
Clustering of CCSU Departments data with 6 TFIDF attributes (k = 2) 



Hierarchical clustering 
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Hierarchical Partitioning 

n  Produces a nested sequence of partitions of the set of data points 
n  Can be displayed as a tree (called dendrogram) with a single cluster 

including all points at the root and singleton clusters (individual points) 
at the leaves 

n  Example of hierarchical partitioning of set of numbers {1, 2, 4, 5, 8, 10} 

The similarity measure 
used in this example is 
computed as (10-d)/10 
where d is the distance 
between data points or 
cluster centers 



August 11, 2016 20 

Approaches to Hierarchical Partitioning 

n  Agglomerative  
n  Starts with the data points and at each step merges the 

two closest (most similar) points (or clusters at later 
steps) until a single cluster remains 

n  Divisible  

n  Starts with the original set of points and at each step 
splits a cluster until only individual points remain  

n  To implement this approach we need to decide which 
cluster to split and how to perform the split 
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Approaches to Hierarchical Partitioning (cont’d) 

n  The agglomerative approach is more popular as it 
needs only the definition of a distance or similarity 
function on clusters/points 
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Approaches to Hierarchical Partitioning (cont’d) 

n  For data points in the Euclidean space the Euclidean 
distance is the best choice 

n  For documents represented as TF-IDF vectors the 
preferred measure is the cosine similarity defined as 
follows 
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Agglomerative Hierarchical Clustering 

n  There are several versions of this approach depending 
on how similarity on clusters sim(S1,S2) is defined 
(S1,S2 are sets of documents) 
n  Similarity between cluster centroids, i.e. sim(S1,S2)=sim(c1,c2), 

where the centroid c of cluster S is  

n  Maximum similarity between documents from each cluster 
(nearest neighbor clustering)  
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Agglomerative Hierarchical Clustering (cont’d) 

n  Minimum similarity between documents from each cluster 
(farthest neighbor clustering)  

n  Average similarity between documents from each cluster 
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Agglomerative Clustering Algorithm 

n  S is the initial set of documents and G is the clustering tree 
n  k and q are control parameters that stop merging  

n  when a desired number of clusters (k) is reached  

n  or when the similarity between the clusters to be merged 
becomes less than a specified threshold (q) 
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Agglomerative Clustering Algorithm (cont’d) 

For n documents both time and space complexity of the 
algorithm are O (n2) 
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Agglomerative Clustering Example 1 
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Agglomerative Clustering Example 1 



DIANA clustering algorithm 
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Clustering evaluation 
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Web Content Mining 

n  Evaluating Clustering 
n  Similarity-Based Criterion Functions 

n  Probabilistic Criterion Functions 

n  MDL-Based Model and Feature Evaluation 

n  Classes to Clusters Evaluation 

n  Precision, Recall and F-measure 

n  Entropy 
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Similarity-Based Criterion Functions (distance) 

n  Basic idea: the cluster center ci (centroid or mean in case 
of numeric data) best represents cluster Di  if it minimizes 
the sum of the lengths of the “error” vectors x -ci      for all x 
∈ Di 

n  Alternative formulation based on pairwise distance 
between cluster members 
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Similarity-Based Criterion Functions (cosine similarity) 

n  For document clustering the (centroid) cosine similarity is used 

n  Equivalent form based on pairwise similarity 

n  Another formulation based on intracluster similarity (used 
to controls merging of clusters in hierarchical 
agglomerative clustering) 
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Classes to Clusters Evaluation 

n  Assume that the classification of the documents in a 
sample is known, i.e. each document has a class label 

n  Cluster the sample without using the class labels 

n  Assign to each cluster the class label of the majority of 
documents in it 

n  Compute the error as the proportion of documents with 
different class and cluster label 

n  Or compute the accuracy as the proportion of documents 
with the same class and cluster label 
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Classes to Clusters Evaluation (Example) 
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Confusion matrix (contingency table) 

TP (True Positive), FN (False Negative), FP (False Positive), TN (True Negative) 

FNTNFPTP
FNFPError
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+++

+
=



August 11, 2016 37 

Precision and Recall 
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F-Measure 
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F-Measure (Example) 
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Entropy 

n  Consider the class label as a random event and evaluate 
its probability distribution in each cluster 

n  The probability of class i in cluster j is estimated by the 
proportion of occurrences of class label i in cluster j 

n  The entropy is as a measure of “impurity” and accounts for 
the average information in an arbitrary message about the 
class label 
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Entropy (cont’d) 

n  To evaluate the whole clustering we sum up the entropies 
of individual clusters weighted with the proportion of 
documents in each 
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Entropy (Examples) 

n  A “pure” cluster where all documents have a single class 
label has entropy of 0 

n  The highest entropy is achieved when all class labels have 
the same probability 

n  For example, for a two class problem the 50-50 situation 
has the highest entropy of (-0.5 log 0.5- 0.5 log 0.5)=1 
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Entropy (Examples) (cont’d) 

n  Compare the entropies of the previously discussed 
clusterings for attributes offers and students 
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Summary 

n  Cluster analysis groups objects based on their similarity  
and has wide applications 

n  Measure of similarity can be computed for various types 
of data 

n  Clustering algorithms can be categorized into partitioning 
methods, hierarchical methods, density-based methods, 
grid-based methods, and model-based methods 

n  Outlier detection and analysis are very useful for fraud 
detection, etc. and can be performed by statistical, 
distance-based or deviation-based approaches 

n  There are still lots of research issues on cluster analysis 
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Discussion 
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