
Convergence of contour processes of random
trees

Douglas Rizzolo
Rough Notes

In this lecture, we are interested in studying the asymptotic contour process of a Gatlon-
Watson tree with Geometric(1/2) offspring distribution conditioned to be large. Instead of
looking at the contour process of a single tree, it will be easier to first consider an infinite
forest of trees. We will use Donsker’s theorem to find the limiting contour process of the
forest and then we will look for large trees that occur naturally in the infinite forest. In
order to simplify our lives, we will consider a signed forest. That is, we let F = ((Tk, Uk))k≥1
be an i.i.d sequence such that Tk and Uk are independent, P(Uk = 1) = P(Uk = −1) = 1/2
and Tk is a planted Gatlon-Watson tree with Geometric(1/2) offspring distribution, planted
meaning the root is conditioned to have degree equal to 1. We will call F a signed forest of
planted Gatlon-Watson trees with Geometric(1/2) offspring distribution.

For a tree t, we let Ct : [0, 2#t]→ [0,∞) be the contour function of t. Consider a signed
forest f = ((tk, ek))k≥1 and let n0 = 0 and nt = min{j : 2#t1 + · · ·+ 2#tj > t}. The contour
function of the forest is defined by Cf (t) = entCtnt

(t− 2[#t1 + · · ·+ #tnt−1])

Theorem 1. (CF (k))k≥0 is a simple random walk.

Proof. Let X1, X2, . . . be i.i.d with P(Xk = 1) = P(Xk = −1) = 1/2 and define S0 = 0
and Sn = X1 + · · · + Xn for n ≥ 1. We want to show that (CF (k))k≥0 =d (Sn)n≥0. There
are many ways to do this, but one nice one is to use excursion theory. We decompose
the random walk based on its returns to 0. Specifically, let τ0 = 0 and for n ≥ 1 define
τn = min{n > τn−1 : Sn = 0}. Using the strong Markov property of simple random walk,
we see that ((Sτn+k)

τn+1

k=0 )n≥0 is an i.i.d. sequence. But ((eTnCTn(k))2#Tnk=0 )n≥0 is also an i.i.d.

sequence and (Sτn+k)
τn+1

k=0 =d (eTnCTn(k))2#Tnk=0 by the formula for P(Tk = t) and the bijection
between rooted ordered trees Dyck paths.

Corollary 1. We can construct a sequence ((Cn
F (k))k≥0)n≥0 such that (Cn

F (k))k≥0 =d (CF (k))k≥0
for every n and a Brownian motion (Bt, 0 ≤ t < ∞) on a common probability space such
that for every T > 0,

max
t∈[0,T ]

∣∣∣∣ 1√
n
CF (nt)− 1√

n
Bnt

∣∣∣∣ p−→
n→∞

0.

This is not quite what we need. We need the following corollary of this result, which
follows from the Skorokhod representation theorem.

Corollary 2. We can construct an ind(CF (k))k≥0 and a Brownian motion (Bt, 0 ≤ t <∞)
on a common probability space such that for every T > 0,

max
t∈[0,T ]

∣∣∣∣ 1√
n
Cn
F (nt)−Bt

∣∣∣∣ a.s.−→
n→∞

0.
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How can we use this to obtain results about conditioned Galton-Watson trees? We make
the following observation: If Y1, Y2, . . . is an i.i.d sequence, A is a set such that P(Y1 ∈ A) > 0,
and σA = inf{n : Yn ∈ A}, then P(YσA ∈ B) = P(Y1 ∈ B|Y1 ∈ A). That is, YσA is distributed
like Y1 conditioned to be in A. For example, if A = {t : ht(t) > n} then TσA is distributed
like a Galton-Watson tree conditioned to have height greater than n.

What sort of events can Corollary 2 be used to condition on? Let us give some heuristics.
Suppose that (An)n≥0 is a sequence of events such that P(T1 ∈ An) ∼ cn−1/2. Note that
σAn has a geometric distribution with parameter P(T1 ∈ An). The the expected number of
trees we need to look at to see a tree in An is EσAn = P(T1 ∈ An)−1 ∼ c−1n1/2. In Corollary
2, we look at the first nT vertices in the forest, how many trees is this? The Otter-Dwass
formula and the local central limit imply that P(#T1 = n) ∼ Cn−3/2. The stable central
limit theorem implies that

1

n2

n∑
k=1

#Tk
d−→ Y,

where Y is a totally asymmetric stable distribution. Consequently,
∑√n

k=1 #Tk ≈ nY , so
Corollary 2 looks at the first

√
n trees in the forest. Thus we can expect that with positive

probability the first tree in An will occur before we have seen the first nT vertices of the
forest. Thus if we can pick out the part of the contour process corresponding to this tree,
we should be able to prove a functional limit theorem for its contour process.

Example If An = {t : ht(t) ≥
√
n} then P(T1 ∈ An) ∼ n−1/2, so we can condition on these

events.

Example If An = {t : #t ≥ n} then P(T1 ∈ An) ∼ cn−1/2, so we can condition on these
events.

Non-Example If An = {t : #t = n} then P(T1 ∈ An) ∼ cn−3/2, so we cannot condition on
these events.

In order to make this heuristic rigorous, we need the following result about Brownian
motion that seems clear but is somewhat tricky to prove.

Proposition 1. Letting γ = inf{t > 0 : Bt = 0} we have γ = 0 a.s.

Corollary 1. The zero set of Brownian motion has no isolated points.

Proof. For q ∈ Q+ define τq = inf{t > q : Bt = 0}. By the strong Markov property,
inf{t > τq : Bt = 0} = 0 a.s. Thus this holds almost surely simultaneously for all q ∈ Q+.
Suppose that Bt = 0 t does not equal τq for any q ∈ Q+. For every q < t, q ≤ τq < t. Letting
q ↑ t proves the result.

To illustrate the method, we prove the following theorem.
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Theorem 1. Let Tn be distributed like a Galton-Watson tree conditioned to have height at
least

√
n. Then (

1√
n
CTn(nt)

)
0≤t∞

d−→ (B1
t , 0 ≤ t <∞).

where B1 is a Brownian excursion conditioned to have height at least 1.

Corollary 2. If a < b < x then Px(τa < τb) = (b− x)/(b− a). P(ht(Tn) ≥ b) = (b− 1)/b.

Proof. Proof by martingales. Proof by random walk. (Somewhat redundant).

Convergence of the corresponding height process. Vertices occur after up-steps. Large
deviations concentration about 2t of the time change.
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