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Abstract 

 

This chapter proposes a learning and prediction based paradigm for designing smart home environments. 

The foundation of this paradigm lies in information theory as it manages uncertainties in inhabitants’ 

contexts (e.g., location or mobility, and activities) in daily lives. The underlying idea is to intelligently build 

compressed dictionaries of context profiles collected from sensor data, efficiently learn from this 

information, and then predict inhabitant’s future contexts. Successful prediction helps automate device 

control operations and tasks within the environment as well as to identify anomalies. Thus, the learning and 

prediction based paradigm optimizes goal functions of smart home environments such as minimizing 

maintenance cost, manual interactions and energy utilization. After describing some important features of 

smart environments, this chapter presents the architecture details of our MavHome project. The proposed 

paradigm is then applied to the inhabitant’s location and activity tracking and prediction, and automated 

decision making capability. MavHome implementation issues and some practical issues are also discussed. 
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1. Introduction 

We live in an increasingly connected and automated society. Smart environments embody this trend by 

linking computers and other devices to everyday settings and commonplace tasks. Although the desire to 

create smart environments has existed for decades, research on this multidisciplinary topic has become 

increasingly intense in the last ten years or so. Indeed, tremendous advances in such areas as smart (portable) 

devices and appliances, wireless mobile communications, pervasive computing, wireless sensor networking, 



machine learning and decision making, robotics, middleware and agent technologies, and human computer 

interfaces have made the dream of smart environments become a reality. As depicted in Figure 1, a smart 

environment is a small world where sensor-enabled and networked devices work continuously and 

collaboratively to make lives of inhabitants more comfortable. A definition of “smart” or “intelligent” is “the 

ability to autonomously acquire and apply knowledge”, while an “environment” refers to our surroundings. 

We therefore define a “smart environment” as one that is able to acquire and apply knowledge about an 

environment and to adapt to its inhabitants in order to improve their experience in that environment [8]. 

The type of experience that individuals wish from their environment varies with the individual and the 

type of environment considered.  For example, they may wish the environment to ensure the safety of its 

inhabitants, they may want to reduce the cost or overhead of maintaining the environment, they may wish to 

optimize the resource (e.g. utility/energy bills or communication bandwidth) usage, or they may want to 

automate tasks they typically perform in the environment.  The expectations of such environments have 

evolved with the history of the field. In [8], we introduced the necessary technologies, architectures, 

algorithms, and protocols to build a smart environment along with a variety of existing applications. In this 

chapter, we will demonstrate that wireless mobile and sensor networks play a significant role in this domain. 

 

 
 

 

 
Figure 1. A Schematic View of a Smart Environment. 

 
 



Reflecting the increased interest in smart environments, research labs in academia and industry are 

picking up the theme and creating environments with their own individual spin and market appeal.  For 

example, the Georgia Tech Aware Home [1, 22], the Adaptive House at the University of Colorado at 

Boulder [26], and the MavHome smart home at the University of Texas at Arlington [10] use sensors to 

learn models of the inhabitants and automate activities accordingly.  Other types of smart environments, 

including smart offices, classrooms, kindergartens, tables, and cars have been designed by MIT [4, 33], 

Stanford University [14], the University of California at Los Angeles [31, 32], INRIA in France [23], and 

Ambiente, Nissan, and Intel. Connected homes with device communications capability have become the 

focus of companies such as Philips, Cisco [6], GTE, Sun, Ericsson, and Microsoft [5].  Still other groups 

have focused on smart environments to assist individuals with health challenges.  These projects include the 

Gloucester Smart Home [15], the Edinvar Assisted Interactive Dwelling House [13], the Intel Proactive 

Health project [21], agent based smart health monitoring in MavHome [11], and MALITDA smart house for 

individual with special needs [18]. It is easy to see that such environments are results of phenomenal 

advancements in wireless mobile communications infrastructures and sensor networking technologies, 

among others.  

This chapter presents our research experience in developing smart environments through a project called 

MavHome [10], funded by the US National Science Foundation. In particular, we propose “learning and 

prediction” as an overarching framework or paradigm for designing efficient algorithms and smart protocols 

in such environments. The foundation of this paradigm lies in information theory as it manages inhabitants’ 

uncertainties in mobility and activities in daily lives. The underlying idea is to build intelligent (compressed) 

dictionaries of mobility and activity profiles (or histories) of inhabitants, collected from sensor data, learn 

from this information, and then predict future mobility and action., The prediction in turn helps automate 

device operations and manage resources efficiently, thus optimizing the goals of the smart environment. 

The chapter is organized as follows. Section 2 describes important features of smart environments. 

Section 3 presents the architectural details of our MavHome smart home project. Section 4 deals with the 

proposed paradigm for inhabitant’s (indoor) location and activity prediction and automated decision making 



capability. Section 5 discusses MavHome implementation issues, while Section 6 highlights practical 

considerations. Finally, Section 7 concludes the chapter. 

 
2.  Features of Smart Environments 
  

Important features of smart environments are that they possess a degree of autonomy, adapt 

themselves to changing environments, and communicate with humans in a natural way. Intelligent 

automation can reduce the amount of interaction required by the inhabitants, as well as reducing utility 

consumption and other potential wastages. These capabilities can also provide important features such as 

detection of unusual or anomalous behaviors for health monitoring and home security, for example. 

   The benefits of automation can influence every environment we interact with in daily lives. As an 

example, consider operations in a smart home and illustrate with the help of the following scenario.  To 

minimize energy consumption, the home keeps the temperature cool throughout the night. At 6:45am, the 

home turns up the heat because it has learned that it needs 15 minutes to warm to the inhabitant’s favorite 

waking temperature.  The alarm sounds at 7:00, which signals the bedroom light to go on as well as the 

coffee maker in the kitchen.  The inhabitant, Bob, steps into the bathroom and turns on the light.  The home 

records this manual interaction, displays the morning news on the bathroom video screen, and turns on the 

shower.  While Bob is shaving, the home senses that Bob is four pounds over his ideal weight and adjusts 

his suggested daily menu and displays in the kitchen. When Bob finishes grooming, the bathroom light turns 

off while the kitchen light and display turn on.  During breakfast, Bob requests the janitor robot to clean the 

house.  When Bob leaves for work, the home secures all doors behind him and starts the lawn sprinklers 

despite knowing the 30% predicted chance of rain.  To reduce energy costs, the house turns down the heat 

until 15 minutes before Bob is due home.  Because the refrigerator is low on milk and cheese, the home 

places a grocery order.  When Bob arrives home, his grocery order has arrived, the house is back at Bob’s 

desired temperature, and the hot tub is waiting for him. 

This scenario highlights a number of desired features in a smart environment such as a 

home.  In the following, let us look at some of these features in more detail [8]. 



 

 
 

 
 
 
 
 
2.1 Remote Control of Devices 
 

The most basic feature of smart environments is the ability to control devices remotely or automatically.  

Powerline control systems have been available for decades and basic controls offered by X10 can be easily 

installed. By plugging devices into such a controller, inhabitants of an environment can turn lights, coffee 

makers, and other appliances on or off in much the same way as couch potatoes switch television stations 

with a remote control (Figure 2).  Computer software can additionally be employed to program sequences of 

device activities and to capture device events executed by the powerline controllers. 

With this capability, inhabitants are free from the requirement of physical access to devices.  Individuals 

with disabilities can control devices from a distance, as can the person who realized when he got to work 

that he left the sprinklers on.  Automated lighting sequences can give the impression that an environment is 

occupied while the inhabitants are gone, thus handling basic routine procedures by the environment with 

almost no human intervention. 

 

Figure 2. Device Control in Smart Environments. 



2.2 Device Communications 
 

With the maturity of wireless mobile communications and middleware technology, smart environment 

designers and inhabitants have been able to raise their standards and expectations.  In particular, devices use 

these technologies to communicate with each other, share data to build a more informed model of the state 

of the environment and/or inhabitants, and retrieve information from outside sources over the Internet or 

wireless communication infrastructure. This allows better response to the current state and needs. 

As mentioned earlier, such “connected environments” have become the focus of many industry-

developed smart homes and offices.  With these capabilities, for example, the environment can access the 

weather page to determine the forecast and query the moisture sensor in the lawn to determine how long the 

sprinklers should run.  Devices can access information from the Internet such as menus, operational 

manuals, or software upgrades, and can post information such as a grocery store list generated from 

monitoring inventory with an intelligent refrigerator or trash bin. 

Activation of one device can also trigger other sequences, such as turning on the bedroom radio, kitchen 

coffee maker, and bathroom towel warmer when the alarm goes off.  Inhabitants can benefit from the 

interaction between devices by muting the television sound when the telephone or doorbell rings;  

temperature as well as motion sensors can interact with other devices to ensure that the temperature is kept 

at a desired level wherever the inhabitants are located within the environment. Moreover, a smart 

environment will provide a neat service forwarding capability with the help of individual smart devices that 

communicate with each other without human intervention. For example, in a smart environment, calls on a 

mobile phone can be automatically forwarded to a nearby landline phone while emails to the mobile phone 

instead of outdoor cellular network. 

 

2.3 Sensory Information Acquisition/Dissemination 

The recent past has observed tremendous advancements in sensor technology and in the ability of 

sensors to share information and make low-level decisions.  As a result, environments can provide constant 

adjustments based on sensor readings and can better customize behaviors to the nuances of the inhabitants' 



surroundings.  Motion detectors or force sensors can detect the presence of individuals in the environment 

and accordingly adjust lights, music, or climate control.  Water and gas sensors can monitor potential leaks 

and force the valves, thus closing them when a danger arises. Low-level control of devices offers fine-tuning 

in response to changing conditions, such as adjusting window blinds as the amount of daylight coming into a 

room changes. Networks composed of these sensors can share data and offer information to the environment 

at speeds and complexity not experienced in the earlier versions of smart environments.  For example, the 

Smart Sofa [30] developed at Trinity College in Dublin, Ireland can identify an individual based on the 

weight and can theoretically use this information to customize the settings of devices around the house. 

 

2.4 Enhanced Services by Intelligent Devices 

Smart environments are usually equipped with numerous smart devices/appliances that provide varied 

and impressive capabilities.  Networked together and tied to intelligent sensors and the outside world, the 

impact of these devices becomes even more powerful.  Such devices are becoming the focus of a number of 

manufacturers including Electrolux, Whirlpool, and a collection of startup companies. 

As examples of such devices, Frigidaire and Whirlpool offer intelligent refrigerators with features that 

include web cameras to monitor inventory, bar code scanners, and Internet-ready interactive screens. 

Through interactive cameras, inhabitants away from home can view the location of security or fire alerts and 

remote caregivers can check on the status of their patients or family. Merloni's Margherita 2000 washing 

machine is similarly Internet controlled, and uses sensor information to determine appropriate cycle times.  

Other devices such as microwaves, coffee makers, and toasters are quickly joining the collection. 

In addition, specialized equipments have been designed in response to the growing interest in assistive 

environments.  AT&T's Kids Communicator resembles a hamster exercise ball and is equipped with a 

wireless videophone and remote maneuverability to monitor the environment from any location.  A large 

collection of companies including Friendly Robotics, Husqvarna, Technical Solutions, and University of 

Florida's Lawn Nibbler have developed robotic lawn mowers to ease the burden of this time-consuming task, 

and indoor robot vacuum cleaners including Roomba and vacuums from Electrolux, Dyson, and Hitachi are 



gaining in popularity and usability. Researchers at MIT's Media Lab are investigating new specialized 

devices, such as an oven mitt that can tell if food has been warmed all the way through.  A breakthrough 

development from companies such as Philips is an interactive tablecloth that provides cable-free power to all 

chargeable objects placed on the table's surface.  An environment that can combine the features of these 

devices with information gathering and remote control power of previous research will realize many of the 

intended goals of smart environment designers. 

 

 
 
                  
                                             
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

2.5 Networking Standards 

A smart environment will be able to control all of its various networked devices (see Figure 3) such 

as computers, sensors, cameras, and appliances, from anywhere and at anytime through the Internet. For 

example, when the inhabitant is away, he can still be in contact with his different environments to monitor 

their status and/or access his personal database.  From that perspective, all the hardware and software for 

enabling the smart environments should be based on open standards. Moreover, they should be easy to 

install, configure, and operate in order to be user-friendly to the nonprofessional inhabitants or consumers. 

IEEE 802.11 and IEEE 802.15 based wireless LANs, and Bluetooth using spread spectrum techniques under 

Figure 3. Networked Devices in Smart Environments. 



2.4GHz or 5GHz unlicensed ISM (Industrial, Science and Medical) wireless spectrum and Home RF (radio 

frequency) technology have been applied to wireless networking infrastructures for smart environments. 

Alongside, Ethernet (IEEE 802.3), PNA (phoneline networking alliance), and X10 powerline networking 

have emerged as smart-environment wired networking technologies in the market. These technologies have 

advantages and disadvantages. For example, X10 powerline networking has the widest availability; 

however, it has a much lower speed than other PNA and wireless standards. Performance comparison, co-

existence capability and interoperability of these technologies have started in the academic and industry 

research realms while implementing prototypes of smart environments using the above standards. 

 

2.6 Predictive Decision Making Capabilities 

The features of a smart environment described up to this point provide the potential for fulfilling the goal 

of a smart environment; that is, improving the experience of inhabitants of the environment.  However, 

control of these capabilities is mostly in the hands of the users.  Only through explicit remote manipulation 

or careful programming can these devices, sensors, and controllers adjust the environment to fit the needs of 

the inhabitants.  Full automation and adaptation rely on the software itself to learn, or acquire information 

that allows the software to improve its performance with experience. 

Specific features of recent smart environments that meet these criteria incorporate predictive and 

automatic decision-making capabilities into the control paradigm. Contexts (mobility, activity, etc.) of 

inhabitants as well as of the environment can be predicted with good accuracy based on observed activities 

and known features.  Models can also be built of inhabitant patterns that can be used to customize the 

environment for future interactions.  For example, an intelligent car can collect information about the driver 

including typical times and routes to go to work, theatre, restaurant, and store preferences, and commonly 

used gas stations.  Combining this information with data collected by the inhabitant's home and office as 

well as Internet-gathered specifics on movie times, restaurant menus and locations, and sales at various 

stores, the car can make recommendations based on the learned model of activity patterns and preferences. 



Similarly, building a model of device performance can allow the environment to optimize its behaviors 

and performance.  For example, a smart kitchen may learn that the coffee maker requires ten minutes to 

complete brewing a full pot of coffee, and will start it up ten minutes before it expects the inhabitants to 

want their first cup.  Smart light bulbs may warn when they are about to expire, letting the factor 

automatically deliver replacements before the need is critical. 

As a complement to predictive capabilities, a smart environment will be able to make decisions of how to 

automate its own behaviors to meet the specified goals.  Device settings and timings of events are now in the 

control of the environment.  Such a smart environment will also have to elect between alternate methods of 

achieving a goal, such as turning on lights in each room entered by an inhabitant or anticipating where the 

inhabitant is heading and illuminating just enough of the environment to direct the individual to their goal. 

In fact, this learning and prediction aspect of smart environments will be the focus of the rest of this chapter. 

 

 

3 The MavHome Smart Home 

The MavHome at the University of Texas at Arlington represents an environment that acts as an 

intelligent agent, perceiving the state of the home through sensors and acting upon the environment through 

device controllers. The goal is to maximize inhabitants’ comfort and minimize the home’s operating cost. To 

achieve this goal, the house must be able to reason about, learn, predict, and adapt to its inhabitants. 

In MavHome, the desired smart home capabilities are organized into an agent based software architecture 

that seamlessly connects the components while allowing improvements to be made to any of the supporting 

technologies.  Figure 4 describes the architecture of a MavHome agent that separates the technologies and 

functions into four cooperating layers.  The Decision layer selects actions for the agent to execute. The 

Information layer collects information and generates inferences useful for making decisions. The 

Communication layer is responsible for routing and sharing information between agents. The Physical layer 

contains the environment hardware including devices, transducers, and network equipment.  The MavHome 

software components are connected using a distributed inter-process communication interface. 



Because controlling an entire house is a large-scale complex learning and reasoning problem, it is 

decomposed into reconfigurable tasks.  Thus, the Physical layer for one agent may represent another agent 

somewhere in the hierarchy, which is capable of executing the task selected by the requesting agent. 

 

 

 

 

 

 

 

 

 

 

 

Perception is a bottom-up process.  Sensors monitor the environment (e.g., lawn moisture level) and, 

if necessary, transmit the information to another agent through the Communication layer.  The database 

records the information in the Information layer, updates its learned concepts and predictions accordingly, 

and alerts the Decision layer of the presence of new data.  During action execution, information flows top 

down. The Decision layer selects an action (e.g., run the sprinklers) and relates the decision to the 

Information layer.  After updating the database, the Communication layer routes the action to the appropriate 

effector to execute. If the effector is actually another agent, the agent receives the command through its 

effector as perceived information and must decide upon the best method of executing the desired action.  

Specialized interface agents allow interaction with users, robots, and external resources such as the Internet.  

Agents can communicate with each other using the hierarchical flow shown in Figure 4. In the remaining 

discussions, a smart home will generically represent a smart environment. 

  

     

Figure 4.  MavHome Agent Architecture. 



4. Automation through Learning and Prediction 

    In order to maximize comfort, minimize cost, and adapt to the inhabitants, a smart home must 

rely upon sophisticated tools for intelligence building such as learning, prediction, and making 

automated decisions. We will demonstrate that learning and prediction indeed play an important 

role in determining the inhabitant’s next action and anticipating mobility patterns within the home. 

MavHome uses these predictions in order to automate selected repetitive tasks for the inhabitant.  

The home will need to make this prediction based solely on past mobility patterns and previously 

seen inhabitant interaction with various devices (e.g., motion detectors, sensors, device controllers, 

video monitors), as well as the current state of the inhabitant and/or the house. The captured 

information can be used to build sophisticated models that aid in efficient prediction algorithms. 

The number of prediction errors must be minimal, and the algorithms must be able to deliver 

predictions with minimal delays for computation. Prediction is then handed over to a decision-

making algorithm that selects actions for the house to meet its desired goals. The underlying concepts 

of MavHome prediction schemes lie in the text compression, online parsing and information theory.  Well-

investigated text compression methods [9, 35] have established that good compression algorithms are also 

good learner and hence good predictors.  According to information theory [9], a predictor with an order (size 

of history used) that grows at a rate approximating the entropy rate of the source is an optimal predictor. In 

the following, we summarize our novel paradigm for inhabitant’s mobility and activity predictions. 

 

4.1 Inhabitant Location Prediction  

    By definition, a smart environment is context-aware in the sense that by combining inputs from 

multiple sensing devices, it should be able to deduce the inhabitant’s intent or attributes without explicit 

manual input. Location is perhaps the most common example of context. Hence, it is crucial for a smart 

environment to track inhabitant’s mobility accurately by determining and predicting his location. The 

prediction also helps in optimal allocation of resources and activation of effectors in location-aware 



applications [12, 25]. In [2], we first proposed a model-independent algorithm for location prediction in 

wireless cellular networks, which we later adopted for indoor location tracking and predicting inhabitant’s 

future locations in smart homes [16, 29]. This approach is based on symbolic representation of location 

information that is specified not in absolute terms, but relative to the topology of the corresponding access 

infrastructure (e.g., sensor ids or zones through which the inhabitant passes), thus making our approach 

universal or technology/model independent. At a conceptual level, prediction involves some form of 

statistical inference, where some sample of the inhabitant’s past movement history (profile) is used to 

provide intelligent estimates of his future location, thereby reducing the location uncertainty associated with 

this prediction [12, 28]. 

Hypothesizing that inhabitant’s mobility has repetitive patterns that can be learned, and assuming 

the inhabitant’s mobility process as stochastically random, we proved the following result [2, 3]. It is 

impossible to optimally track mobility with less information exchange between the system (in this case 

smart environment) and the device (detecting inhabitant’s mobility) than the entropy rate (bits/second) of the 

stochastic mobility process. Specifically, given all past observations of inhabitant’s position and the best 

possible predictors of future position, some uncertainty in the position will always exist unless the device 

and the system exchange location information. The actual method by which this exchange takes place is 

irrelevant to this bound. All that matters is that the exchange exceeds the entropy rate of the mobility 

process. Therefore, a key issue in establishing bounds is to characterize the mobility process (and therefore 

its entropy rate) in an adaptive manner. To this end, based on the information theoretic framework, an 

optimal on-line adaptive location management algorithm, called LeZi-update, was proposed [2, 3] for 

cellular communication networks. Rather than assuming a standard mobility model of the node, LeZi-update 

learns node movement history stored in a Lempel-Ziv (LZ) type of compressed dictionary [35], builds a 

universal mobility model by minimizing entropy, and predicts future locations with a high degree of 

accuracy. In other words, LeZi-update offers a model-independent solution to manage uncertainty related to 

node mobility. This framework is quite general and applicable to other contexts such as activity prediction 

[17], resource provisioning [12, 28], anomaly detection, and so on. 



Figure 5(a) depicts a typical floor plan layout of MavHome together with the placement of motion 

(in-building) sensors along the inhabitant’s routes, by partitioning MavHome’s coverage area into sensor 

zones or sectors. When the system (environment) needs to contact the inhabitant, it will initiate a location 

prediction scheme. In order to control the location uncertainty, the system also relies on the location 

information as sampled by the sensors, which in turn helps reduce the search space for subsequent 

prediction. As shown in Figure 5(b), the floor plan can be represented as a connected graph G = (V, E) 

where the node-set V = {a, b, c, …} denotes the zones (sensor-ids) and the edge-set E denotes the 

neighborhood adjacency between a pair of zones. While moving from one zone to another, the inhabitant 

crosses an array of sensors along a route. For example, the movement from corridor (R) to the dining room 

(D) in the floor plan can be expressed by the collection of sensors {j, l} or {j, k}.  

 

 

 

The LeZi-update framework uses a symbolic space to represent sensing zone of the smart 

environment as an alphabetic symbol and thus captures inhabitant’s movement history as a string of 

symbols.  That is, while the geographic location data are often useful in obtaining precise location 

Figure 5. (a) Typical floor plan of MavHome architecture, (b) Graph representing connectivity of sensor zones 
 



coordinates, the symbolic information removes the burden of frequent coordinate translation and is capable 

of achieving universality across different networks [25, 28]. (The blessing of symbolic representation also 

helps us hierarchically abstract the indoor connectivity infrastructure into different levels of granularity.)  

Tacit in this formulation is that every node has some movement patterns that can be learned in an on-line 

fashion. Essentially, we assume that node itineraries are inherently compressible and this allows application 

of universal data compression algorithms [35], which make very basic and broad assumptions, and yet 

minimize the source entropy for stationary Ergodic stochastic processes [27]. 

 

                           
 

 

Figure 6. (a) Symbolic representation of mobility, (b) Trie holding zones and their frequencies 

 

In LeZi-update, the symbols (sensor-ids) are processed in chunks and the entire sequence of symbols 

withheld until the last update is reported in a compressed (encoded) form.  For example, referring to the 

abstract representation of mobility route in Figure 6(a), let ajlloojhhaajlloojaajlloojaajll… be the 

inhabitant’s movement history at any instant. This string of symbols can be parsed as distinct substrings (or 

phrases) “a, j, l, lo, o, jh, h, aa, jl, loo, ja, aj, ll, oo, jaa, jll, …”. As shown in Figure 6(b), such a symbol-

wise context model, based on variable to fixed-length coding, can be efficiently stored in a dictionary 

implemented by a trie. Essentially the mobile acts as an encoder while the system acts as a decoder and the 

frequency of every symbol is incremented for every prefix of every suffix of each phrase. By accumulating 

larger and larger contexts, one can affect a paradigm shift from traditional position update to route update. 

For stationary Ergodic sources with n symbols, this framework achieves asymptotic optimality, with 

improved update cost bounded by )lglg(lg nn   where lg n denotes logarithm base 2.  



                            Table 1. Phrases and their frequencies at context "jl", "j" and Λ 

Jl J Λ 

l|jl(1) a|j(1) a(4)      aa(2)     aj(1) 
Λ|jl(1) aa|j(1) j(2)       ja(1)     jaa(1)
 l|j(1) jl(1)      jh(1)      l(4) 
 ll|j(1) lo(1)     loo(1)    ll(2) 
 h|j(1) o(4)      oo(2)     h(2) 
 Λ|j(2) Λ(1) 

 
 

One major objective of LeZi-update scheme is to endow the prediction process, by which the system 

finds nodes whose position is uncertain, with sufficient information regarding the node mobility profile. 

Each node in the trie preserves the relevant frequencies provided by the update mechanism in the current 

context. Thus, considering “jll” as the latest update message, the usable contexts are its prefixes, namely: 

“jl”, “j” and Λ (null symbol). A list of all predictable routes (parsed phrases) with frequencies in this context 

is shown in Table 1. Following the blending technique of prediction by partial match (PPM) [7], the 

probability computation starts from the leaf nodes (highest level) of the trie and escapes to the lower levels 

until the root is reached. Based on the principle of insufficient reasoning [27], every phrase probability is 

distributed among individual symbols (zones) according to their relative occurrence in a particular phrase. 

The total residence probability of every zone (symbol) is computed by adding all the probabilities it has 

accumulated from all possible phrases at this context. The optimal prediction order is now determined by 

polling the zones in decreasing order of these residence probabilities. 

So overall, the application of information theoretic methods to location prediction allowed 

quantification of minimum information exchanges to maintain accurate location information, provided an 

on-line method by which to characterize mobility, and in addition, endowed an optimal prediction sequence 

[12]. Through learning this approach allows us to build a higher order mobility model rather than assuming a 

finite model, and thus minimizes entropy and leads to optimal performance. 

While the basic LeZi-Update algorithm was used to predict only the current location from past 

movement patterns, this approach has also been extended in [29] to predict the likely future routes (or 

trajectories) of inhabitants in smart homes and also for heterogeneous environments [24]. The route 



prediction exploits the Asymptotic Equipartition Property in information theory [9] which states that for a 

random process  with entropy H(), the number of observed unique paths of length n is 2H() with 

probability 1. In other words, for reasonably large n, most of the probability mass is concentrated in only a 

small subset (called the typical set) of routes, which encompasses the inhabitant’s most likely routes and 

captures the average nature of long-length sequences. Accordingly, the algorithm simply predicts a 

relatively small set of likely paths (one of which the user will almost surely take next). A smart home 

environment can then act on this information by activating resources (for example, by turning on the lights 

on corridors that constitute one or more of these routes) in a minimal and efficient manner rather than 

turning on all lights in the house. Experiments demonstrate that our predictive framework can save up to 

70% (electrical) energy in a typical smart home environment [29]. The accuracy of prediction is up to 86% 

and only 11% of routes constitute the typical set. 

 

4.2 Inhabitant Action Prediction   

A smart home inhabitant typically interacts with various devices as part of his routine activities.  These 

interactions may be considered as a sequence of events, with some inherent pattern of recurrence.  Again, 

this repeatability leads us to the conclusion that the sequence can be modeled as a stationary stochastic 

process as for mobility.  Inhabitant action prediction consists of first mining the data to identify sequences of 

actions that are regular and repeatable enough to generate predictions, and then using a sequence matching 

approach to predict the next action in one of these sequences. 

To mine the data, a window can be moved in a single pass through the history of inhabitant actions, 

looking for sequences within the window that merit attention.  Each sequence is evaluated using the 

Minimum Description Length principle [27], which favors sequences that minimize the description length of 

the sequence once it is compressed by replacing each instance of the discovered pattern with a pointer to the 

pattern definition. A regularity factor (daily, weekly, monthly) helps compress the data and thus increases 

the value of a pattern.  Action sequences are first filtered by the mined sequences.  If a sequence is 

considered significant by the mining algorithm, then predictions can be made for events within the sequence 



window. Using this algorithm as a filter for two alternative prediction algorithms, the resulting accuracy 

increases on average by 50%. This filter ensures that MavHome will not erroneously seek to automate 

anomalous and highly variable activities [19, 20].  

As above, the action prediction algorithm parses the input string (history of interactions) into substrings 

representing phrases. Because of the prefix property used by the algorithm, parsed substrings can be 

efficiently maintained in a trie along with frequency information. To perform prediction, the algorithm 

calculates the probability of each symbol (action) occurring in the parsed sequence, and predicts the action 

with the highest probability. To achieve optimal predictability, the predictor must use a mixture of all 

possible order models (phrase sizes) when determining the probability estimate. To accomplish this, 

techniques from the PPM family of predictors are incorporated, that generate weighted Markov models of 

different orders. This blending strategy assigns greater weight to higher-order models, in keeping with the 

advisability of making the most informed decision. 

In experiments run on sample smart home data, predictive accuracy of this approach converged on 100% 

for perfectly-repeatable data with no variation, and converged on 86% accuracy for data containing 

variations and anomalies [17].  

 

4.3 Automated Decision Making   

As mentioned earlier, the goal of MavHome is to enable the home to automate basic functions in order to 

maximize the inhabitants’ comfort and minimize the operating cost of the home. We assume comfort is a 

function of the number of manual interactions with the home, and the operating cost of energy usage. 

Because the goal is a combination of these two factors, blind automation of all inhabitant actions is 

frequently not the desired solution.  For example, an inhabitant might turn on the hallway light in the 

morning before opening the blinds in the living room. MavHome could, on the other hand, open the blinds in 

the living room before the inhabitant leaves the bedroom, thus alleviating the need for the hallway lights.  

Similarly, turning down the air conditioning after leaving the house and turning it back up before returning 



would be more energy efficient than turning the air conditioning to maximum after arriving home in order to 

cool it as quickly as possible [29]. 

To achieve its goal, MavHome uses reinforcement learning to acquire an optimal decision policy.  In this 

framework, the agent learns autonomously from potentially-delayed rewards rather than from a teacher, 

reducing the requirement for the home’s inhabitant to supervise or program the system. To learn a strategy, 

the agent explores the effects of its actions over time and uses this experience to form control policies that 

optimize the expected future reward. 

MavHome learns a policy based on a state space, S = {si}, consisting of the states of the devices in the 

home, the predictions of the next event, and expected energy utilization over the next time unit. A reward 

function, r, takes into account the amount of required user interaction, the energy consumption of the house, 

and other parameters that quantify the performance of the home.  This reward function can be tuned to the 

particular preferences of the inhabitants, thus providing a simple means to customize the home’s 

performance.  Q-learning is used [34] to approximate an optimal action strategy by estimating the predicted 

value, Q(st, at), of executing action at in state st at time t.  After each action, the utility is updated as: 

)],(),(max[),( 11 ttt
Aa

ttt asQasQrasQ    . After learning, the optimal action, at, can be 
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 . 

 

5. MavHome Implementation 

In the MavHome smart home project at the University of Texas at Arlington, student activity data 

are collected continuously based on their interactions with devices in the environment. Off-the-shelf X10 

controllers automate most devices and thus inhabitant’s actions. Arrays of sensors track their mobility. 

Using the ResiSim 3D simulator, a graphical model has been constructed of the intelligent 

environment.  The model allows a visitor at a remote location to monitor or change the status of devices in 

MavHome, as shown in Figures 7 and 8.  Images in the left column of Figure 7 show web cameras placed 

throughout the environment, and the simulator visualization is shown on the right. The “Information” 

window in the lower right indicates that devices have recently been manipulated, either manually or by 



MavHome.  Figure 8 shows that the light in the entryway (upper left) is illuminated once Darin enters the 

environment  and the lamp on Ryan’s desk (lower left) turns on to assist him with work.  The updated status 

of the lamp is shown by the yellow circle in the ResiSim model (right). The model will indicate the status of 

sensors as well – the orbs in Figure 9 indicate that there are two areas of activity captured by motion sensors. 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Web camera views of MavHome environment (left) and ResiSim visualization (right). 

 

 

 

 

 

 

 

 

 

 

Figure 8.  ResiSim update after desk lamp (lower left) is turned on. 



 

 

 

 

 

 

 

 

 

Figure 9.  ResiSim indicates activated motion sensors with green orbs. 

 

A live demonstration of MavHome was conducted in the fall of 2004.  During the previous weeks, 

activity data was collected for one of the project participants (“MavHome Bob”).  Actions included turning 

on lights en route to his desk in the morning, watching a live news feed on the computer, taking a coffee and 

TV break, and turning off devices on the way out at the end of the day. Despite the presence of 

approximately fifty people during the live demonstration (who were setting off motion sensors throughout 

the environment), MavHome correctly predicted and automated each activity. Figure 10 reflects the 

movements of MavHome Bob as he moves through the environment and lights are illuminated reflecting his 

typical activities. 

 

 

 

 

 
Figure 10.  Bob’s movements in MavHome.  Bob’s position is indicated by a dashed box. 



6. Practical Considerations 

So how easily can the features of a smart home be integrated into new or existing homes?  The software 

described in the MavHome implementation consists of commercial X10 controllers, a computer, a variety of 

sensors, and a wireless network.  A simple implementation can be integrated into an existing house for under 

a thousand dollars, in many cases.  If robots or customized devices are introduced, the cost increases. 

A computer interface to a smart home must be very simple.  Manual control of devices can override 

home decisions, and alternative interfaces including voice control are offered. Other than starting or 

resetting the software, no interaction with the computer is required. In our experiments, the software adapted 

to user activities in a couple of weeks, but the training time will vary according to the complexity of 

inhabitant’s actions and the number of people in the home. Although minimal expertise is required, various 

types of interaction are possible depending on the needs of the inhabitant.  The user can vary certainly the 

threshold at which activities are automated, although this is not necessary because manual resetting of 

actions selected by the house constitute negative reward and will eventually cause the house to not automate 

those particular commands. The inhabitant can also request that the home simply make suggestions for 

automation; selection of rules for automation will be made by the inhabitant on a case-by-case basis. 

Introducing intelligent control into a house can result in a number of privacy and safety issues. Safety 

constraints must be placed on each device to ensure that the house will not select an action that endangers 

inhabitants. The house may not be allowed, for example, to select a temperature setting below 50 degrees or 

above 90 degrees. The entire automation can be quickly disabled with one mouse click or voice command – 

each device can operate with or without computer control. The inhabitant also needs to specify the type of 

data that can be collected, and which data, if any, can be disseminated for learning across multiple 

households or cities. 

Similarly, smart homes typically benefit from collecting information about the health, typical patterns, 

and other features of their inhabitants. This leads to a number of privacy and security issues. Data should 

only be collected on features allowed by the inhabitants, and shared with other sites only as volunteered.  



New smart homes in neighboring locations could, for example, benefit from patterns learned in an older 

home, but care must be taken to share information without violating the privacy of home inhabitants. 

 

7. Conclusions  

This chapter demonstrated the effectiveness of learning and prediction based paradigm in a smart home 

environment. Efficient prediction algorithms provide information useful for future locations and activities, 

automating activities, optimizing design and control methods for devices and tasks within the environment, 

and identifying anomalies. These technologies reduce the work to maintain a home, lessen energy 

utilization, and provide special benefits for elderly and people with disabilities. In the future, these abilities 

will be generalized to conglomeration of environments, including smart offices, smart roads, smart hospitals, 

smart automobiles, and smart airports, through which a user may pass through in daily life. Another research 

challenge is how to characterize mobility and activity profiles of multiple inhabitants (e.g., living in the 

same home) in the same dictionary and predict or trigger events to meet the common goals of the house 

under conflicting requirements of individual inhabitants. 
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