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Outline of the course

Part 1: The discrete picture

“The tree-valued Markov chain arising from pruning
Galton-Watson trees”

Part 2: The continuous picture

“The Continuum Random Tree (CRT) and pruning of
continuum trees”

Part 3: Convergence of the discrete to the continuous picture

“Leaf sampling weak vague topology and The pruning process”
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Outline: Part I
The tree-valued Markov chain arising from pruning
Galton-Watson trees

1 Random tree models: the discrete world

(a) Notation and terminology of trees
(b) Random trees: link between Galton-Watson and

combinatorial trees

Galton-Watson trees
Galton-Watson trees conditioned on fixed progeny
Galton-Watson trees conditioned on number of leaves

2 Pruning Galton-Watson trees

(a) Edge and node percolation: homogeneous pruning
(b) Node percolation with degree dependence
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Notation and terminology for our trees

By a tree t we mean a rooted, labelled tree, i.e., a set of vertices

V = V (t) equipped with a direct edge relation
t→ such that for

some root ρ = ρ(t) ∈ V there is for each v ∈ V a unique path from
the root to v .

For v ,w ∈ t with v
t→ w , call w a child of v and v the parent of w .

h = h(v , t) is called the height of v in the tree t. The height h(t) of
a tree t is the maximal height of a vertex in the tree.

If a subset S ⊆ V is such that the restriction of
t→ defines a tree s,

then S or s are called a subtree of t.

Let #t := #V (t) denote the size of the tree.

The number of edges in t equals #t− 1.
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Family trees (=rooted, ordered trees)

Let Tn be the set of all rooted, ordered trees with n vertices
(including the root), i.e., we distinguish between trees when the
birth order is not the same.

We have #T1 = 1, #T2 = 1, #T3 = 2, #T4 = 5, as
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We consider finite trees t as elements in T :=
⋃

n≥1 Tn.

For each t ∈ T and g = 0, 1, 2, ..., each vertex at height g
corresponds to an individual in the g th generation of the family.

We identify an individual in the g th generation with a sequence of g
integers, for instance (2, 7, 4) to indicate a third generation
individual who is the 4th child of the 7th child of the 2nd child of
the progenitor (root). This generates a labelling on trees.
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Labelled family trees: illustration
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Exercise. Show that the number of rooted, ordered trees equals the
Catalan numbers, i.e., for all k = 1, 2, ...,

#Tk = 1
k

(2(k−1)
(k−1)

)
= 2k−1 1

k! (2k − 3)!!,

where (2n − 1)!! = (2n − 1) · (2n − 3) · ... · 3 · 1. The first numbers are:

1, 1, 2, 5, 14, 42, 132, 429, ...

Hint. Show that #Tn =
∑n−1
`=1

#T` · #Tn−`, n ≥ 2, and use this to determine g(s) :=
∑

n≥1 sn#Tn .
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Labelled family trees: ordered, rooted, possibly infinite
trees

To allow for possibly infinite family trees, we consider trees t as
rooted trees for which the vertex set

V ⊆ {ρ} ∪
⋃
g∈N

Ng

satisfies

(i) If w = (v , j) ∈ V for some v ∈ Ng , g ≥ 1 and j ∈ N, then
w = (v , j ′) ∈ V for all 1 ≤ j ′ ≤ j .

(ii) For all v ∈ V , the number of v ’s children is finite, i.e.,
cv := #{j ∈ N : (v , j) ∈ V } <∞.

(iii) If w = (v , j) ∈ V for some v ∈ Ng , g ≥ 1 and j ∈ N, then
v ∈ V .

and with the set of directed edges v
t→ w if and only if w = (v , j)

for some v ∈ Ng , g ≥ 1, and j ∈ N, or if v = ρ and w = (j) for
some j ∈ N.

Denote by T∞ the set of all possibly infinite family trees.
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Convergence of family trees in T∞

The height of t ∈ T∞ equals the maximal g ∈ N0 such that
V (t) ∩ Ng 6= ∅.

For each height h ∈ N0 there is a natural restriction map
rh : T∞ → T(h) where T(h) denotes the set of all finite trees of
height at most h. Namely,

rht := {ρ} ∪
(
V (t) ∩

(⋃h

g=1
Ng
))
.

The restriction maps (rh, h ∈ N) satisfy a projective property, i.e.,
rht = rh

(
rh+1t

)
.

A tree t ∈ T∞ can thus be identified with the sequence
(rht; h ∈ N0).

We say that a sequence (tn)n∈N converges to t in T∞ if and only
if for all h ∈ N0, the sequences (rhtn)n∈N converges to rht in Th with
respect to the discrete topology.
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Random family trees

A random family tree T is a random variable with values in T∞.

Define convergence of distributions of random trees by weak
convergence of probability measures on T∞. That is, for random
family trees Tn, n = 1, 2, ..., we say that (Tn)n∈N converges in
distribution to T if for all h ∈ N0 and t ∈ T(h),

P
{
rhTn = t

} −→
n →∞ P

{
rhT = t

}
.

In this lecture we will mainly focus on the two classes of random
trees:

Combinatorial trees. We choose these trees uniformly in a
certain class of trees, e.g., family trees (also called plane
trees), Cayley trees, binary trees, etc.
Galton-Watson trees. We construct these trees by choosing
the number of “children” of the root, then recursively the
number of children of each child, and so on.

There is a link between several combinatorial trees and
Galton-Watson trees conditioned on the progeny.
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Galton-Watson trees

Definition (Galton-Watson tree)

Let p := (p(0), p(1), ...) be a probability distribution on N0 with
p(1) < 1. We call a random tree G a Galton-Watson tree with
offspring distribution p(·) iff

the number of children of the root has distribution p(·), and

for each h = 1, 2, ..., conditionally given that rhG = t ∈ T(h), the
numbers of children cv (G), v ∈ gen(h,G), are i.i.d. w.r.t. p(·).

For all t ∈ T,
P
{
G = t

}
=
∏

v∈V (t)
p
(
cv t
)
. (1)

Let µ :=
∑

n∈N np(n) be the mean offspring number, then the
following are equivalent:

µ ≤ 1 ⇔ P
{

#G <∞
}

= 1 ⇔ P
{

height(G) ≥ h
} −→

h →∞ 0.

Consequently, if µ ≤ 1, then the distribution of G is uniquely
determined by (1).
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Example: Poisson Galton-Watson trees

For µ > 0, let GPois(µ) be a Galton-Watson tree with Poisson
offspring distribution with mean µ, i.e.,

pµ(n) := µn

n! e
−µ, n = 0, 1, 2, ...

Denote the distribution of GPois(µ) by PGW(µ). Notice that for all
t ∈ T,

P
{
GPois(µ) = t

}
= e−µ#tµ#t−1

∏
v∈V (t)

1
(cv t)!

Use that
∑

v∈V (t) cv = #t− 1.
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Example: Binary branching trees

For v ∈ (0, 1), let Gbinary(p) be a Galton-Watson tree whose
offspring distribution satisfies

pv (0) := (1− v), pv (2) = v .

That is, almost surely any vertex (other than the root) in Gbinary(v)

has either degree 1 (= leaf) or degree 3 (= inner node). Such tree
are called binary.

Notice that if t ∈ T is binary, rooted with n ≥ 2 leaves (other than
the root), then #t = 2n − 1. Hence

P
{
Gbinary(v) = t

}
= (1− v)#Lf(t) · v (#Lf(t)−1).

In the critical case v = 1
2 , and

P
{
Gbinary(v) = t

}
= 2−#t.

In particular, all rooted, binary ordered trees of the same size are
equally likely.
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Example: Geometric Galton-Watson trees

For u ∈ (0, 1), let GGeom(u) be a Galton-Watson tree with
geometric offspring distribution with success parameter u, i.e.,

pu(n) := u · (1− u)n, n = 0, 1, 2....

Denote the distribution of GGeom(u) by Geom(u). Notice that for all
t ∈ T,

P
{
GGeom(u) = t

}
= u#t ·

(
1− u

)#t−1

Use once more that
∑

v∈V (t) cv = #t− 1.

Specifically, if u = 1
2 ,

P
{
GGeom( 1

2 ) = t
}

= 2−(2#t−1).

In particular, under the law of GW-trees with critical geometric
offspring all trees of the same size are equally likely.
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Coding finite family trees via the contour function

The contour function of a finite rooted, ordered tree t is obtained
by traversing the tree at speed 1 starting in the root clockwise, and
recording the height profile.

As every edge is traversed exactly twice, if t has n edges, then the
contour function is a function on [0, 2n].
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Contour function representation of a geometric GW-tree

Characteristic for the geometric distribution (among discrete
distributions) is the memoryless property, i.e., if G has geometric
distribution with success parameter u ∈ (0, 1), then for all
n,m ∈ N0,

P
(
G = m + n

∣∣G ≥ n
)

= P
{
G = m

}
.

Thus the contour function of geometric GW-trees can be
represented by a Markov process.

Lemma

If G is Geom(u), then the contour process (Cn)n∈{0,1,2,...,τ0} is a random
walk with jump distribution P{Ck − Ck−1 = −1} = u and
P{Ck − Ck−1 = 1} = 1− u stopped one step before it gets negative.

Notice that for any other offspring distribution, the contour process
is NOT a Markov process.
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Lukasiewicz walk

Enumerate vertices of t in lexicographic order, v0 := ρ, v1 := (1),
..., v#t−1.

Define S0 := 0, and for 0 ≤ n ≤ #t− 1,

Sn+1 = Sn +
(
cvn(t)− 1

)
.
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Lukasiewicz walk associated with a GW-tree
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Lemma

If G is a GW-tree with offspring distribution p(·), then the Lukasiewicz
walk (Sn)0≤n≤#G is a random walk with jump distribution

ν(k) = p(k + 1), k = −1, 0, ...,

stopped at its first hitting time of −1. That is, for all n = 1, 2, ...,

P
{

#G = n
}

= P
{
S1 ≥ 0, ...,Sn−1 ≥ 0,Sn = −1

}
.
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Lukasiewicz walk and GW-trees: proof

Sn+1 = Sn +
(
cvn(t)− 1

)
, cv (t) number of children of v in t

For a GW-tree G with offspring distribution p(·), the
{cvn(G)− 1, n = 0, ...,#G − 1} have distribution ν(k) = p(k + 1),
k = −1, 0, 1, 2, ....

S#G =
∑

v∈V (G) cv (G)−#G = (#G − 1)−#G = −1.

For all 1 ≤ m ≤ #G − 1,

Sm =
m−1∑
n=0

(
cvn(G)− 1

)
=

m−1∑
n=0

cvn(G)−m ≥ 0,

because among all individuals counted in
∑m−1

n=0 cvn(G), the
individuals v1, ..., vm will appear.
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Dwass’ observation

Proposition (Dwass (1962) [4])

Let X1, X2, ... i.i.d. with P{X1 = k} = p(k + 1), and Sn :=
∑n

i=1 Xi . Then

P
{
S1 ≥ 0,S2 ≥ 0, ..., Sn−1 ≥ 0, Sn = −1

}
= 1

n
P
{
Sn = −1

}
.

Sketch of proof: a numerical illustration. Consider all possible cyclic permutations:
x1 x2 x3 x4 x5 x6 x7 x8 s1 s2 s3 s4 s5 s6 s7 s8

1 2 -1 1 -1 -1 -1 -1 1 3 2 3 2 1 0 -1
2 -1 1 -1 -1 -1 -1 1 2 1 2 1 0 -1 -2 -1
-1 1 -1 -1 -1 -1 1 2 -1 0 -1 -2 -3 -4 -3 -1
1 -1 -1 -1 -1 1 2 -1 1 0 -1 -2 -3 -2 0 -1
-1 -1 -1 -1 1 2 -1 1 -1 -2 -3 -4 -3 -1 - 2 -1
-1 -1 -1 1 2 -1 1 -1 -1 -2 -3 -2 0 -1 0 -1
-1 -1 1 2 -1 1 -1 -1 -1 -2 -1 1 0 1 0 -1
-1 1 2 -1 1 -1 -1 -1 -1 0 2 1 2 1 0 -1
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Dwass’ observation: sketch of formal proof

Proposition (Dwass (1962) [4])

Let X1, X2, ... be an i.i.d. sequence with P{X1 = k} = p(k + 1), and
Sn :=

∑n
i=1 Xi . Then

P
{
S1 ≥ 0,S2 ≥ 0, ...,Sn−1 ≥ 0,Sn = −1

}
= 1

nP
{
Sn = −1

}
.

Sketch of a formal proof.

We consider the n cyclic permutations of a given set of
{−1, 0, 1, 2, ...}-valued numbers x1, x2, ..., xn with

∑
xi = −1.

Denote by T (`) the cyclically permuted sequence

x`, x`+1, ..., xn, x1, ..., x`−1.

Show that {T (`); ` = 1, ..., n} contains exactly one representative
for which all first n − 1 partial sums are non-negative.

As each representative has the same probability, the claim follows.
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Dwass’ observation: the cyclic lemma

Lemma

Given {−1, 0, 1, 2, ...}-valued integers {xi , i = 1, ..., n} with
∑n

i=1 xi = −1, we
denote for any ` = 1, ..., n by T (`) the cyclically permuted sequence

x`, x`+1, ..., xn, x1, ..., x`−1.

We claim that the set {T (`), ` = 1, ..., n} contains exactly one element for which the
minimum of the first (n − 1) partial sums in T (`) is non-negative.

Proof of existence. We are given {xi , i = 1, ..., n} with partial sums sk :=
∑k

i=1 xi ,
sn = −1. W.l.o.g. assume that the minimum of the first (n − 1) partial sums in T (1)
is negative.

Let µ(1) denote the first index at which the minimum among s1, ..., sn−1 is
attained. That is, s` − sµ(1) ≥ 1 for ` < µ(1), and sµ(1) − s` ≥ 0 for ` ≥ µ(1).

It follows that the minimum of the first (n − 1) partial sums in T (µ(1) + 1) is
non-negative. Indeed, the partial sums of T (µ(1) + 1) are

sµ(1)+1 − sµ(1)︸ ︷︷ ︸
≥0

, ..., sn − sµ(1)︸ ︷︷ ︸
≥0

, sn −sµ(1) + s1︸ ︷︷ ︸
≥1

, sn −sµ(1) + s2︸ ︷︷ ︸
≥1

, ..., sn − sµ(1) + sµ(1).

Anita Winter Pruning procedures on trees 20



Dwass’ observation: the cyclic lemma

Lemma

Given {−1, 0, 1, 2, ...}-valued integers {xi , i = 1, ..., n} with
∑n

i=1 xi = −1, we
denote for any ` = 1, ..., n by T (`) the cyclically permuted sequence

x`, x`+1, ..., xn, x1, ..., x`−1.

We claim that the set {T (`), ` = 1, ..., n} contains exactly one element for which the
minimum of the first (n − 1) partial sums in T (`) is non-negative.

Proof of uniqueness. We are given {xi , i = 1, ..., n} with partial sums

sk :=
∑k

i=1 xi , sn = −1. W.l.o.g. assume that the minimum of the first (n − 1) partial
sums in T (1) is non-negative.

Fix ` ∈ {2, ..., n}. Notice that the n − `+ 1 partial sum in T (`) equals

sn − s`−1 ≤ −1.
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Consequence of Dwass’ observation

Corollary

Let X1, X2, ... be an i.i.d. sequence distributed according to the offspring
distribution ν(k) := p(k + 1), k = −1, 0, ..., and Sn :=

∑n
i=1 Xi . Then

for all n ∈ N,
P
{

#G = n
}

= 1
nP
{
Sn = −1

}
.

Equivalently, we also have the following:

Corollary

Let X1, X2, ... be an i.i.d. sequence distributed according to the offspring
distribution p(·), and Sn :=

∑n
i=1 Xi . Then for all n ∈ N,

P
{

#G = n
}

= 1
nP
{
Sn = n − 1

}
.
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Total progeny of the Poisson-Galton-Watson tree

Let X1, X2, ... be i.i.d. Poisson distributed with mean µ, and
Sn :=

∑n
k=1 Xk .

Then Sn is Poisson distributed with parameter nµ and we find that

P
{

#GPois(µ) = n
}

= 1
nP
{
Sn = n− 1

}
=

(nµ)n−1

n!
e−nµ, n = 1, 2, ...

This distribution is called Borel(µ)-distribution.

Lemma

If X is Borel(µ)-distributed for µ < 1, then E[X ] = (1− µ)−1.

Proof. Put ν(µ) := µe−µ. As

µ =
∑

n≥1

nn−1µn

n!
e−nµ =

∑
n≥1

nn−1νn

n!
,

differentiating by ν yields

dµ
dν

=
∑

n≥1
n
nn−1νn−1

n!
= eµE

[
X
]
.

Now use that
e−µ

(
dν
dµ

)−1
= (1− µ)−1.

Exercise. If X is Borel(µ)-distributed for µ < 1, then
E[X ] = (1− µ)−1.
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Total progeny of the binary Galton-Watson tree

s

Let X1, X2, ... be i.i.d. with P{X1 = 0} = 1− v and
P{X1 = 2} = v , and Sn :=

∑n
k=1 Xk .

Then Sn

2 has binomial distributed with parameters n and v , and we
find that

P
{

#Gbinary(v) = 2`− 1
}

= 1
2`−1P

{
S2`−1 = 2`− 2

}
= 1

2`−1

(
2`− 1

`− 1

)(
1− v

)` · v `−1

= 2`−1 1
(`−1)! (2`− 3)!!(1− v)

(
(1− v)v

)`−1
, ` = 1, 2, 3, ...

In particular, if v = 1
2 ,

P
{

#Gbinary( 1
2 ) = 2`− 1

}
= 1

(`−1)! (2`− 3)!! · 2−`.
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Total progeny of the geometric Galton-Watson tree

Let X1, X2, ... be i.i.d. geometrically distributed with success
parameter u ∈ (0, 1), and Sn :=

∑n
k=1 Xk .

Then Sn has negative binomial distribution with parameters n
and u, i.e.,

P
{
Sn = k

}
=
(k+n−1

k

)
un ·

(
1− u

)k
, k = 0, 1, 2, ...

We therefore find that for all n = 1, 2, ...,

P
{

#GGeom(u) = n
}

= 1
nP
{
Sn = n − 1

}
= 1

n

(2(n−1)
n−1

)
un ·

(
1− u

)(n−1)

= 2n−1(2n − 3)!! · u
n(1−u)n−1

n! ,

where
(2k − 1)!! = (2k − 1) · (2k − 3) · ... · 3 · 1.

Specifically, if u = 1
2 ,

P
{

#GGeom( 1
2 ) = n

}
= 2−n 1

n! (2n − 3)!!.
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Total progeny: asymptotic behavior as n→∞

Apply the local central limit theorem.

Theorem (Local CLT)

Let X1, X2, ... be i.i.d. with finite second moment and positive variance
σ2 > 0. Then

sup
k∈N

∣∣∣σ√nP{X1 + X2 + ...+ Xn = k
}
− 1√

2π
e−

k2

2σ2n

∣∣∣ −→n →∞ 0.

The asymptotic behavior for progeny distribution is well-known. Assume
that G is a Galton-Watson tree whose offspring distribution p(·) has finite
second moment and positive variance σ2 > 0. Let
d := g.c.d.{i ∈ N : p(i) > 0}. Note that GW-tree can only have sizes
that are 1 modulo d . Thus if n` = d`+ 1,

P
{

#G = n
}
∼ d√

2πσ2n3
.
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Conditioning on total progeny: assumption

Assume that the offspring distribution p(·) is such that the generating
function g(s) =

∑
k≥0 s

kp(k) satisfies

∃ a > 0 : g(a) = ag ′(a), g ′′(a) <∞ (2)

Note. Assumption (2) is always satisfied if µ > 1. In the case µ = 1 it
is satisfied if σ2 <∞. In the case µ < 1 the assumption requires the
p(1), p(2), ... to decay exponentially.

Lemma (Kennedy (1975), [6])

Let G be a GW-tree whose offspring generating function satisfies (2). Put
ḡ(s) := g(as)/g(a) (equivalently, p̄(n) := an

g(a)p(n), n = 1, 2, ...).

Then this offspring distribution is critical and the corresponding
Galton-Watson tree satisfies for each n ∈ N,

L
(
G
∣∣#G = n

)
= L

(
Ḡ
∣∣#Ḡ = n

)
.

In words, a GW tree conditioned on fixed progeny looks always like a
critical GW tree conditioned on total progeny.
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Conditioning on total progeny: formulation via
GW-processes

Define the new offspring distribution

p̄(k) := ak

g(a)p(k), k = 0, 1, 2, ...

Let {Zk ; k = 0, 1, ...} and {Z̄k ; k = 0, 1, ...} be the Galton-Watson
processes with offspring distributions p(·) and p̄(·), rsespectively.
Moreover, put N :=

∑∞
i=0 Zi and N̄ :=

∑∞
i=0 Z̄i .

Lemma

For each n ∈ N, 0 ≤ k1, ..., kj ≤ n,

P
{
Zk1 = r1, ...,Zkj = rj

∣∣N = n
}

= P
{
Z̄k1 = r1, ..., Z̄kj = rj

∣∣N̄ = n
}
.
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Conditioning on total population of GW-processes

Lemma

For each n ∈ N, 0 ≤ k1 < ... < kj ≤ n,

P
{
Zk1 = r1, ...,Zkj = rj

∣∣N = n
}

= P
{
Z̄k1 = r1, ..., Z̄kj = rj

∣∣N̄ = n
}
.

Proof. Let Nk :=
∑k

n=0 Zn and N̄k :=
∑k

n=0 Z̄n be the total numbers in
the first k generations. Then

P
{
Zk1 = r1, ...,Zkj = rj

∣∣N = n
}

=
P
{
Zk1 = r1, ...,Zkj = rj ,N = n

}
P
{
N = n

}
=

n∑
s=1

P
{
Zk1 = r1, ...,Zkj = rj ,Nkj = s

}P{N1 + ...+ N rj = n − s + rj
}

P
{
N = n

} ,

where N1, N2, ... are i.i.d. with the same distribution as #Gp(·). The

claim follows by exploiting our transformation as follows:
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Consequences of the offspring distribution transformation

1

P{Sn = j} =
∑

i1,...,in:
∑

ik=j

p(i1 + 1) · ... · p(in + 1)

= g(a)n

an+j · P{S̄n = j}.

2 Specifically, for j = −1, P{N = n} = g(a)n

an−1 P{N̄ = n}.
3 As before let N1, N2, ... be i.i.d. with the same distribution as

#Gp(·), and N̄1, N̄2, ... be i.i.d. with the same distribution as
#Gp̄(·). Similar as before we conclude that

P{N1 + ...+ N r = k} = g(a)k

ar−k P{N̄1 + ...+ N̄ r = k}.

4

P
{
Zk1 = r1, ...,Zkj = rj ,Nkj = s

}
=

g(a)s−rj

as−1
P
{
Z̄k1 = r1, ..., Z̄kj = rj , N̄kj = s

}
.
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Example: Binary branching trees

Assume that for some v ∈ (0, 1),

pv (0) := (1− v) and pv (2) = v .

Then p̄(·) is binary as well. By criticality,

p̄(0) = p̄(2) = 1
2 .

Lemma

Any binary GW-tree conditioned on total progeny n equals in distribution.
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Binary GW-trees conditioned on total progeny equals the
random rooted, binary ordered trees

Lemma

Denote by T(2)
` the set of binary, rooted ordered trees with ` leaves,

` = 1, 2, .... Then #T(2)
` = 2`−1(2`− 3)!! 1

(`−1)! .

Proof. Let G denote the binary, rooted GW-tree. For each t ∈ T(2)
` ,

` = 1, 2, ...

P
{
G = t

∣∣#G = 2`− 1
}

= P{G=t}
P{#G=2`−1}

= (1−v)`v`−1

2`−1

(`−1)! (2`−3)!!(1−v)`v`−1

= (`−1)!
2`−1(2`−3)!!

.

As we have shown before that all critical, binary GW-trees with a fixed
number of vertices, (or equivalently, fixed number of leaves) is equally
likely, the claim follows.
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Example: Geometric Galton-Watson tree

Assume that for some u ∈ (0, 1),

pu(k) := u ·
(
1− u

)k
, k ≥ 0.

Then
p̄u(k) := u ·

(
1− u

)k · ak

g(a) , k ≥ 0.

Thus p̄u is again geometrically distributed and by criticality,

p̄u(k) := 2−(k+1), k = 0, 1, 2, ...

Lemma

Any geometric GW-tree conditioned on total progeny n equals in
distribution.
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Geometric GW-tree conditioned on total progeny is
uniform rooted, ordered tree

Recall that the number of rooted, ordered trees with n vertices equals

#Tn := 2n−1 1
n! (2n − 3)!!.

Proposition

Let G be the geometric GW-tree with mean offspring 1. Then for all
t ∈ Tn, n ≥ 1,

P
{
G = t

∣∣#G = n
}

=
(
#Tn

)−1
.

Proof. For each t ∈ Tn,

P
{
G = t

∣∣#G = n
}

= P{G=t}
P{#G=n}

=
n!2−(2n−1)

2−n(2n − 3)!!

=
n!

2n−1(2n − 3)!!
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Example: Poisson Galton-Watson tree

Assume that for some λ > 0,

pλ(k) := λk

k! e
−λ, k ≥ 0.

Then
gλ(s) :=

∑
k≥0

sk λ
k

k! e
−λ = exp

(
− λ(1− s)

)
, s > 0

and

sg ′λ(s) = gλ(s) iff s := λ−1, and g ′′λ (λ−1) = λ2 exp
(
1− λ

)
<∞.

We find that with s0 := λ−1

ḡλ(s) = gλ(s0s)
gλ(s0) = exp

(
− (1− s)

)
= g1(s).

Lemma

Any Poisson GW tree conditioned on total progeny n equals in
distribution.
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Cayley trees: Random rooted, unordered trees

Consider now a tree as a set of vertices with an edge being an
unordered pair of vertices.

For a labelled tree with n vertices, the vertices are labelled by
1, 2, ..., n.

Labelled trees t and t′ are isomorphic iff for each pair (i , j) of
labels, (i , j) is an edge in t iff it is an edge in t′.

Denote by T[n] the set of all isomorphy classes of labelled trees.

Proposition (Cayley’s formula)

For all n ≥ 2, #T[n] = nn−2.

Two unlabelled trees are isomorphic iff there exist labellings
making them isomorphic as labelled trees.

Denote by T̃[n] the set of all isomorphy classes of rooted unlabelled

trees, and by t̃ the isomorphy class to which t belongs.
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Labelled and unordered labelled trees: illustration

There are 42 = 16 labelled, unrooted, unordered trees but only 2 unlabelled, unrooted

trees with 4 vertices. Thus #T[4] = 43 = 48 and #T̃[4] = 8.
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Number of rooted, unordered, unlabelled trees

Proposition (Pitman (1997), [8])

There are exactly
n!∏

v∈V (G) cv (t)!

distinct ways (up to isomorphy) to label a given rooted, unlabelled tree t
with n vertices.
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PGW conditioned on total progeny equals the uniform
unordered tree

Proposition (Aldous (1991), [2])

Let G be the PGW(1). Then for all t ∈ T̃[n], n ≥ 1,

P
{
G̃ = t

∣∣#G = n
}

=
(
#T̃[n]

)−1
.

Proof. For each t ∈ T̃[n],

P
{
G̃ = t

∣∣#G = n
}

=
P
{
G̃=t
}

P
{

#G=n
}

=
n!en

∏
v∈V (G) p(cv (t))

nn−1

=
n!en

∏
v∈V (G)

e−1

cv (t)!

nn−1

=
n!∏

v∈V (G) cv (t)!

nn−1
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Mean number of leaves

Lemma

Let Gp be a Galton-Watson tree with offspring distribution p(·). Then

E
[
#Lf(Gp)

]
=

p(0)

1−
∑

n≥1 np(n)
.

Proof. By the branching property, for all n ≥ 1, ` ≥ n,

P
{

#Lf(Gp) = `
∣∣cρ(Gp) = n

}
= P

{∑n

i=1
Li = `

}
,

where L1, L2, ... are i.i.d. copies of #Lf(Gp). Thus

E
[
#Lf(Gp)

]
= p(0) + E

[
cρ(Gp)

]
E
[
#Lf(Gp)

]
,

which gives E
[
#Lf(Gp)

]
= p(0)

1−
∑

n≥1 np(n) .
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Number of leaves

Lemma

Let Gp be the GW-tree with offspring distribution p(·), and let #Lf(Gp)
denote its number of leaves. Then for all n ≥ 0, there exists a constant
Cp(n) such that

P
{

#Lf(Gp) = n
}

= pn(0) · Cp(n).

Proof. W.l.o.g. assume p(1) < 1. If t is a rooted ordered family tree with m inner
nodes (including the root) whose offspring numbers are a1, a2, ..., am, then

#Lf(t) = a1 + a2 + ...+ am −m + 1,

and thus

P
{
Gp = t

}
= p(a1) · p(a2) · ... · p(am) · pa1+a2+...+am−m+1(0).

Therefore

P
{

#Lf(Gp) = n
}

= pn(0) ·
∑

t,#Lf(t)=n
p(a1) · p(a2) · ... · p(am) =: pn(0) · Cp(n).
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Conditioning on the number of leaves

Proposition (Abraham, Delmas & He (2012), [1])

Let p(·) and q(·) be two offspring distributions. Let Gp and Gq be the
associated Galton-Watson trees and let #Lf(Gp) and #Lf(Gq) denote
their number of leaves. Then for all n ≥ 0,

P
(
Gp ∈ ·

∣∣#Lf(Gp) = n
)

= P
(
Gq ∈ ·

∣∣#Lf(Gq) = n
)

if and only if there exists a u > 0 such that for all k ≥ 1,

q(k) = uk−1 · p(k).

Proof. For all n ≥ 1 and trees t with inner node degrees (a1, ..., am) such that∑m
i=1 ai = n + m − 1,

P
(
Gp = t

∣∣#Lf(Gp) = n
)

= P
(
Gq = t

∣∣#Lf(Gq) = n
)
⇔ p(a1)...p(am)

Cp(n)
= q(a1)...q(am)

Cq(n)
.

If n = 1, all trees with 1 leaf are those with one offspring each generation until the last
individual dies. Thus for all k ≥ 0, Cp(1) = 1/(1− p(1)) and Cq(1) = 1/(1− q(1)),
and hence

pk (1)
(
1− p(1)

)
= qk (1)

(
1− q(1)

)
.

We can therefore conclude that p(1) = q(1).
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Proof of conditioning on the number of leaves: I

Continuation of Proof. Let n0 := min{n ≥ 2 : p(n) > 0}, and choose

u :=
(

q(n0)
p(n0)

)1/(n0−1)

If p(0) + p(1) + p(n0) = 1, q(k) = uk−1 · p(k) trivially holds for all
k ≥ 1. On the other hand, for all n > n0 with p(n0) > 0, put
N := 2(n − 1)(n0 − 1). For any tree t with N + 1 leaves, n − 1 inner
nodes with n0 offspring and n0 − 1 inner nodes with n offspring, we
conclude that

pn−1(n0)pn0−1(n)
Cp(N+1) = qn−1(n0)qn0−1(n)

Cq(N+1) .

Moreover, for any tree t with N + 1 leaves and 2(n − 1) inner nodes with
n0 offspring, we conclude that

p2(n−1)(n0)
Cp(N+1) = q2(n−1)(n0)

Cq(N+1) .

Dividing the two latter equations implies that for all n ≥ 1,

q(n) = un−1p(n).
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Proof of conditioning on the number of leaves: II

Conversely, lets suppose that for all n ≥ 1,

q(n) = un−1q(n).

Then for all n ≥ 1 with Cp(n) 6= 0, and for every tree t with n leaves,

q(a1)...q(am) = ua1−1p(a1)...uam−1p(am)

= un−1p(a1)...p(am).

Thus Cq(n) = un−1Cp(n), and therefore

q(a1)...q(am)
Cq(n) = ua1−1p(a1)...uam−1p(am)

un−1p(a1)...p(am) = p(a1)...p(am)
Cp(n)

which was shown to be equivalent to

P
(
Gp ∈ ·

∣∣#Lf(Gp) = n
)

= P
(
Gq ∈ ·

∣∣#Lf(Gq) = n
)
.
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Classical problem: Cutting down trees

Given a rooted tree (t, ρ).

1 Remove an edge uniformly at random. This disconnects the tree
into two subtrees.

2 Destroy the subtree which does not contain the root.

3 We iterate until the are stuck with a tree without edges. That
means, the root is isolated.

Denote by N(t, ρ) the (random) number of cuts needed to isolate
the root.

Question:

What can we say about the distribution of N(t, ρ)?
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Equivalent formulation in terms of records

N(T , ρ) appears also when we are consider records in a tree.

Let each edge e have a random value λe attached to it, and
assume that these values are i.i.d. with a continuous distribution.

Say that a value λe is a record if it is the largest value in the
path from the root to e.

Then the number of records equals in distribution N(T , ρ).
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43

568

17

2

87

11

To see this, generate first the values λe , and then cut the tree:
each time choosing the edge with the largest λe among the
remaining ones.
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Classical record problem

Take Tn be a path with n edges, from the root to an end.

Let N(Tn) be the number of records on a sequence of n i.i.d.
numbers λ1, ..., λn.

Let Aj be the event that λj is a record. Then P(Aj) = 1
j , so 1Aj is

Bernoulli distributed with success parameter 1
j . Thus

E
[
N(Tn)

]
=

n∑
i=1

1
j ∼ ln n.

Moreover, A1,A2, ..., An are independent and satisfy the
Lyapunov condition. Hence the CLT holds:

N(Tn)−ln n√
ln n

w−−−→
n→∞

N (0, 1).
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Janson’s result for Galton-Watson trees

Theorem (Janson (2006), [5])

Let Gn be the GW-tree with offspring distribution p(·) conditioned to
have n vertices. Assume that p(·) is critical, p(1) < 1, and p(·) has finite
variance σ2. Then

P
{
N(Gn, ρ) ≥ x

√
nσ
} −→

n →∞ e−x
2/2.

Proof will be given in Part II.

Remark. The limit distribution is known as Rayleigh distribution.
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Pruning finite trees: edge percolation

1 Consider a rooted, finite tree (t, ρ)

2 Mark edges independently with probability 1− u

3 Call the unmarked component containing ρ the pruned tree tu

4 Couple different pruning procedures such that tu ⊆ tv , u ≤ v , and
obtain a non-decreasing process (tu)u∈[0,1]
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Pruning finite trees: edge percolation
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Pruning finite trees: edge percolation

1 Consider a rooted, finite tree (t, ρ)
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Edge percolation of Galton-Watson trees

1 Consider a GW-tree G with offspring distribution p(·).

2 Mark edges independently with probability 1− u.

Lemma (Lyons (1992) [7])

The pruned tree Gu is a GW-tree with offspring generating function

gu(s) = g1(1− u + us), s ∈ (0, 1).

In particular, if G is PGW(µ) then Gu is PGW(uµ).

3 Proof. Given the size of the first generation of G is Z1. Then the

size Z
(u)
1 of the first generation of Gu is distributed as the sum of Z1

independent Bernoulli variables. Thus for all s ∈ (0, 1),

gu(s) := E
[
sZ

(u)
1
]

= E
[
E
[
sZ

(u)
1

∣∣Z1

]]
= E

[(
(1− u) + su

)Z1
]

= g1

(
1− u + su

)
.

If g1(s) := e−µ(1−s), then gu(s) = e−uµ(1−s).
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Joint distribution of pruned and unpruned GW tree

For c ,m ≥ 0 and 0 < α < β < 1, denote

P̄α,β(c ;m) := P
{
cρ(Gβ)− cρ(Gα) = m

∣∣cρ(Gα) = c
}
.

Denote by pα(·) and pβ(·) the offspring laws of the tree pruned with
parameter α, β ∈ [0, 1]. Then obviously,

P̄α,β(c ;m) =
pβ(m+c)
pα(c)

(
m + c

c

)(
α
β

)c(
1− α

β

)m
.

Corollary (Rao & Rubin (1964), [9])

P̄α,β(c ;m) does not depend on c iff pβ(·) is Poisson distributed. That is,
cρ(Gα) and cρ(Gβ)− cρ(Gα) are independent if and only if Gβ is a
Poisson GW-tree.

I will leave the proof for you as an exercise.
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Representation of the (un)pruned tree

Proposition (Aldous & Pitman (1998), [3])

Fix 0 < α < β < 1. Given Gα, let {Kα(v), v ∈ V (Gα)} be a independent
family with

P
{
Kα(v) = k

}
= P̄α,β

(
cv (Gα), k

)
, k = 0, 1, ...

Moreover, given {Kα(v), v ∈ V (Gα)}, let G̃β be defined by random
attachments of Kα(v) independent copies of Gβ at vertex v . Then(

Gα,Gβ
) (d)

=
(
Gα, G̃β

)
Sketch of proof.

Conditionally given the pruned tree Gα, the family
{cv (Gβ)− cv (Gα); v ∈ V (Gα)} is independent, and thus distributed
as the family {Kα(v), v ∈ V (Gα)}.
Each of the children of v ∈ Gα in Gβ is the root of a subtree of Gβ
which - identified as a family tree is an independent copy of Gβ .
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Pruning Poisson GW-trees: the total progeny

Corollary

Fix 0 ≤ α < β <∞. Assume that G1 is a PGW(λ)-tree. Given Gα, let
{Nα,β(v); v ∈ V (Gα)} be an i.i.d. family with Poisson((β − α)λ)
distribution, and put

Nα,β :=
∑

v∈V (Gα)

Nα,β(v).

Moreover, let G1
β , G2

β , ... be independent copies of Gβ . Then

(
Gα,#Gβ

) (d)
=
(
Gα,#Gα +

Nα,β∑
i=1

#G iβ
)
.
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Pruning Poisson GW-trees: a martingale

Proposition (Aldous & Pitman (1998), [3])

Let G be the PGW(µ) with µ < 1, and {Gu; u ∈ [0, 1]} be the pruned
process. Then (#Gu)u∈[0,1] is a Markov process, and the process{(

1− µu
)
#Gu; u ∈ [0, 1]

}
is a martingale w.r.t. the filtration generated by {Gu, u ∈ [0, 1]}.

Proof. Recall that Gu is PGW(uµ), and thus E
[
#Gu

]
=
(
1− uµ

)−1
.

Using the representation given before, for 0 ≤ α < β ≤ 1,

E
[
#Gβ

∣∣Gα] = #Gα + #Gα(β − α)µE
[
#Gβ

]
= #Gα + #Gα(β − α)µ

(
1− µβ

)−1
= 1−αµ

1−βµ#Gα.

With the Markov property we conclude that

E
[
(1− βµ)#Gβ

∣∣{Gα′ , α′ ∈ [0, α]}
]

= E
[
(1−βµ)#Gβ

∣∣Gα]= (1− αµ)#Gα.
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Vertex versions of cuttings and records

There are also vertex versions for cuttings and records:

For cuttings, choose a vertex at random and destroy it together
with all its descendants. Continue until the root is chosen and
thus the whole tree is destroyed.

For records, we assign i.i.d. values λv (or a random permutation)
to the vertices, and define a record as above.

Again, vertex cutting and records are equivalent: Denote by

Nvertex(t, ρ)

:= # number of vertex deletions needed to destroy the tree.
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Planted tree

Given a rooted tree (t, ρ) with n vertices. We add a new vertex, called
the base and link it to the root ρ of t by a new edge. This gives a
planted tree which we denote by t̄. The set Ē of edges of t̄ is thus the
set E of edges of t plus the newly inserted edge.
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Duality between rooted tree and planted tree

We consider Ē as a set of vertices, and endow it with a natural tree
structure by declaring that e and e′ are neighbors if and only if the
are adjacent in t̄. The map v : Ē → V (E ) that associates to an edge e
of t̄ its end point v(E ) which is further away from the base is bijective
and preserves the tree structure.
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Corollary

Any statement expressed in terms of the edges of the planted tree t̄ can
thus be rephrased in terms of the vertices of t and vice versa.
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Duality between rooted tree and planted tree

Corollary

The distributions of N(t, ρ) and of Nvertex(t, ρ) agree.
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A inhomogeneous pruning

1 Consider a rooted, finite tree (t, ρ)

2 Mark vertices independently with probability 1− u(#children-1)

3 Call the unmarked component containing ρ the pruned tree tu

4 Couple different such that tu ⊆ tv , u ≤ v , and obtain a
non-decreasing process (tu)u∈[0,1]
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Inhomogeneous pruning of GW-trees

1 Consider a GW-tree G with offspring distribution p(·).

2 Mark vertices independently with probability 1− u(#children-1)

Lemma (Abraham, Delmas & He (2012) [1])

The pruned tree Gu is a GW-tree with offspring distribution pu(·):

pu(n) = un−1p(n), n = 1, 2, ... and pu(0) = 1−
∑
n≥1

pu(n).

Equivalently,

gu(s) = 1− g1(u)
u + g1(su)

u , s ∈ (0, 1).

3 Proof follows same lines of argument as in the homogeneous case. I
will leave it for you as an exercise.
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Representation of the (un)pruned tree

Proposition (Abraham, Delmas & He (2012), [1])

Let G be a GW-tree with offspring distribution p(·), and (Gu)u∈[0,1] be
the inhomogeneous pruning process. Fix 0 < α < β < 1, and put

pα,β(k) :=
1−
(
α
β

)k−1

pα(0) pβ(k), k = 1, 2, ... and pα,β =
pβ(0)
pα(0) .

Define the modified GW-tree Gα,β in which the size of the first
generation has distribution pα,β , while these and all subsequent

individuals have offspring distribution pβ . If Ĝβ denotes the tree obtained
from Gα by attaching to each of the leaves of Gα independent copies of
Gα,β . Then (

Gα,Gβ
) (d)

=
(
Gα, Ĝβ

)
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Representation of the (un-)pruned GW-tree: illustration

@
@
�
�

@
@

�
�

@
@
�
�ss ssssss pβ(·)

aa
pα,β(·)

ts
s cc

pα(·)
ρ

Notice that the number of leaves process

(#Lf(Gu))u∈[0,1]

is a Markov process for all offspring distributions.
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Proof of the representation of the (un-)pruned GW-tree

W.l.o.g. assume that Gβ is (sub-)critical. Otherwise argue with (rhGu)u∈[0,1]. Fix
0 ≤ α < β ≤ 1, two trees s, t with s being a subtree of t.

The definition of Ĝβ readily implies

P
{
Gα = s, Ĝβ = t

}
= P

{
Gα = s

}
P
(
Ĝβ = t

∣∣Gα = s
)

=
∏

v∈V (s)

pα(cv (s))
∏

v∈Lf(s)

pα,β(cv (t))
∏

v∈V (t)\V (s)

pβ(cv (t)).

On the other hand, by the pruning procedure,

P
{
Gα = s,Gβ = t

}
= P

{
Gβ = t

}
P
(
Gα = t

∣∣Gβ = t
)

=
∏

v∈V (t)

pβ(cv (t))
∏

v∈V (s)\Lf(s)

(
α
β

)cv (t)−1
∏

v∈Lf(s)\Lf(t)

(
1− (α

β
)cv (t)−1

)
=

∏
v∈V (s)\Lf(s)

pα(cv (s))
∏

v∈Lf(s)\Lf(t)

(
1− (α

β
)cv (t)−1

) ∏
v∈V (t)\V (s)∪Lf(s)

pβ(cv (t))

=
∏

v∈V (s)

pα(cv (s))
∏

v∈Lf(s)

pβ (cv (t))

pα(0)

(
1− (α

β
)cv (t)−11{cv (t)>1}

) ∏
v∈V (t)\V (s)

pβ(cv (t))

=
∏

v∈V (s)

pα(cv (s))
∏

v∈Lf(s)

pα,β(cv (t))
∏

v∈V (t)\V (s)

pβ(cv (t)).
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Inhomogeneous pruning of GW-trees: a martingale

Proposition (Abraham, Delmas & He (2012), [1])

Let G be a GW with offspring distribution p(·), and (Gu)u∈[0,1] the
inhomogeneous pruning. Denote the mean offspring of Gu by µ(u). Then{ 1−µ(u)

pu(0) ·#Lf(Gu); u ∈ (0, 1]
}

is a martingale.

Proof. A simple calculation shows that pα,β has mean

µα,β = µ(β)−µ(α)
pα(0) .

By the representation of Gβ given Gα and the Markov property,

E
[
#Lf(Gβ)

∣∣Gα] = #Lf(Gα)E
[
#Lf(Gα,β)

]
= #Lf(Gα)

(
pα,β(0) + µα,βE

[
#Lf(Gβ)

])
= #Lf(Gα)

(
pα,β(0) + µα,β

pβ(0)
1−µ(β)

)
= #Lf(Gα) 1−µ(α)

pα(0)
pβ(0)

1−µ(β) .
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Outline: Part II
THE Continuum Random Tree and continuous pruning
procedures

1 Convergence of the Galton-Watson trees

Convergence of the contour function
Invariance principle via the Lukasiewicz walk

2 Scaling limits

The Brownian CRT
The Levy tree

3 How many cuts needed to isolate k vertices?

How many cuts needed to isolate the root?
The cut tree

4 Pruning procedures on continuum trees

Anita Winter Pruning procedures on trees 66



The contour function

The contour function (Cn(t))n=0,1,...,2(#t−1) of a finite rooted,
ordered tree t was obtained by traversing the tree at speed 1
starting in the root clockwise, and recording the height profile.

Recall that if G is the GW-tree with geometric offspring distribution,
then (Cn(G))n=0,1,...,2(#G−1) has a representation as a nearest
neighbor random walk stopped one time step before it gets
negative.
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Conditional Functional Central Limit Theorem

Proposition

If Gn is the GW-tree with geometric offspring distribution conditioned
to have total progeny n, then(

1√
2n
Cb2ntc(Gn)

)
t∈[0,1]

=⇒
n →∞

(
Bexc
t

)
t∈[0,1]

,

where (Bexc
t )t∈[0,1] is the normalized Brownian excursion.

Remarks.

The normalized Brownian excursion as the scaling limit is the
analogue of standard Brownian motion but conditioned to stay
positive for a while, and then come back to zero for the first time at
time t = 1 (see Durrett, Iglehart & Miller (1977), [6]):

1 Consider a Brownian motion (Bεt )t≥0 starting in Bε0 := ε > 0.
2 Condition (Bεt )t≥0 on the event inf

{
t > 0 : Bεt = 0

}
= 1.

3 Let ε tend to zero.

A more precise construction uses Ito’s excursion theory.
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Aldous’ invariance principle

Proposition

If Gn is the GW-tree with general critical offspring distribution of finite
variance σ2 > 0 conditioned to have total progeny n, then(

1√
2n
Cb2ntc(Gn)

)
t∈[0,1]

=⇒
n →∞

(√
2
σ Bexc

t

)
t∈[0,1]

,

where (Bexc
t )t∈[0,1] is the normalized Brownian excursion.

This statement agrees with the earlier statement as the critical
geometric offspring distribution has variance σ2 = 2.

The proof of the statement follows the line of arguments of the
conditioned version of Donsker’s theorem if and only if the offspring
distribution is geometric.

For general offspring distributions (finite variance) we could argue
by means of the Lukasiewicz walk.
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The Lukasiewicz walk revisited

Enumerate the vertices in lexicographic order.

Define S0 := 0, and for 0 ≤ n ≤ #t− 1, Sn+1 = Sn +
(
cvn(t)− 1

)
.
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Lemma

If G is a GW-tree with offspring distribution p(·), then the Lukasiewicz
walk (Sn)0≤n≤#G is a random walk with jump distribution

ν(k) = p(k + 1), k = −1, 0, ...,

stopped at its first hitting time of −1.
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Proof of Aldous’ invariance principle: The height function

We want to link the contour function (which records the height
profile while traversing) with the Lukasiewicz walk.

For that purpose, we traverse the tree in Lukasiewicz’s lexicographic
order and record the height of a visited vertex.

The result (Hk)k=0,1,...,#t−1 is called the height function.
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The height function: key formula

Given the vertex vk , all vertices in t which are on the way from ρ to
vk can be read off the Lukasiewicz walk as

Hk :=
{
vj : 0 ≤ j < k , Sj = min

j≤i≤k
Si
}
.

Thus the height Hk of vertex vk equals

Hk := #Hk = #
{
j ∈ {0, 1, ..., k − 1} : Sj = min

j≤i≤k
Si
}
.
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For example, H5 := {0, 1, 3}.
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Exploiting the Markov property of the Lukasiewicz walk

Proposition (Csaki & Mohanty (1981), [4])

If Gn is the GW-tree with critical offspring distribution of finite variance
σ2 > 0 conditioned to have n vertices, then(

1√
nσ2

Sbntc(Gn)
)
t∈[0,1]

=⇒
n →∞

(
Bexc
t

)
t∈[0,1]

,

where (Bexc
t )t∈[0,1] is the normalized Brownian excursion.

The statement is a conditioned version of the classical Donsker’s
invariance principle.
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Steps in the proof of Aldous’ invariance principle

1 Read off the height function from the Lukasiewicz walk via the key
formula,

Hn := #
{
j ∈ {0, 1, ..., n − 1} : Sj = min

j≤i≤n
Si
}
.

2 Show that for critical p(·) the contour process and the height
process (up to changing time by a factor of 1

2 ) are close, i.e.,

n−
1
2 sup

t∈[0,1]

∣∣Cb2ntc(Gn)− Hbntc(Gn)
∣∣ −→n →∞ 0, in probability.

3 Show that for critical p(·) with finite variance the Lukasiewicz walk
and a multiple of the height function are close, i.e.,

n−
1
2 sup

t∈[0,1]

∣∣Hbntc(Gn)− 2
σ2 Sbntc(Gn)

∣∣ −→n →∞ 0, in probability.

4 Apply a conditional version of Donsker’s theorem to find that(
1√
2n
C2nt

)
t∈[0,1]

≈
√

2
σ

(
1√
nσ2

Sbntc
)
t∈[0,1]

=⇒
n →∞

√
2
σ

(
Bexc
t

)
t∈[0,1]

.
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Contour function versus Lukasiewicz walk: simulation

The paper Marckert & Mokkadem (2003) ([9]) provides a visual
simulation of the joint convergence of the contour function and the
Lukasiewicz walk towards the same Brownian excursion (up to a
multiplicative factor):

The first picture shows a GW-tree of size n = 5560 with offspring

distribution p(0) = 13
18 , p(2) = 1

6 and p(6) = 1
9 (i.e., σ2

2 = 11
6 ).

The next picture shows a GW-tree of size n = 4208 with
offspring distribution p(0) = 8

15 , p(1) = 4
15 , p(3) = 2

15 and

p(5) = 1
15 (i.e., σ2

2 = 16
15 ).
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The notion of a real tree

Is there a tree associated with the normalized Brownian excursion?

Definition

A complete and separable metric space (T , r) is called a real tree iff

1 any two points a, b ∈ T are joint by a unique arc, and

2 this arc is isometric to a line segment.

It is a rooted real tree if we distinguish a point ρ ∈ T , called the root.
x ∈ T is called a leaf or a a branch point if T \ {x} consists of 1
respectively at least 3 connected components.

Remarks. A real tree can have

uncountably infinitely many leaves,

branch points lying dense in the tree (that is, edge lengths are
infinitesimal small).
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Prominent example: The real tree coded by an excursion

A (continuous) excursion is a function ϕ ∈ C ([0, 1]) with
ϕ
∣∣
{0,1} = 0 and ϕ

∣∣
(0,1)

> 0.

With every excursion ϕ we associate a pseudo-metric on [0, 1]:

rϕ(s, t) := ϕ(s) + ϕ(t)− 2 · inf
u∈[s,t]

ϕ(u).

Fact. T
∣∣
ϕ

= [0, 1]/∼ϕ is a compact real tree with root 0.

10

ϕ

�
�A�
�A�
�A
A�
�
�A�A

A�A
A�A
A
A

Definition (THE Continuum Random Tree)

Call the tree “below” 2· Brownian excursion the Brownian CRT.
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Measure real trees

In order to be able to sample points from the real tree (T , r) it is
often in addition equipped with a probability measure µ.

We refer to µ as the sampling measure.

Examples. Assume that T is associated with a continuous excursion ϕ
over [0, 1].

Equip T
∣∣
ϕ

= [0, 1]/∼ϕ with the (image measure) µ of the Lebesgue

measure on [0, 1] under the map which sends t ∈ [0, 1] to a point in
the tree.

If t is finite, then #Lf(t) + #Br(t) <∞. Typical choices are

the normalized length measure µskeleton, i.e., the normalized
length measure on the set

⊎
`∈Lf(t)[ρ, `],

the uniform distribution µleaf on the set of leaves, or
the uniform distribution µvertex on all vertices.
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Aldous’ CRT

For k ≥ 2, we consider binary trees with k leaves labelled
{1, 2, ..., k} and positive edge lengths {le ; e edges}.

Each such tree has 2k − 3 edges. When edge lengths are ignored,
there are

∏k−2
i=1 (2i − 1) many possible shapes t̂ for the tree.

Lemma (Aldous (1993), [1])

There exists a family (R(k); k ≥ 1) of such random binary trees s.t.

R(k) has density

P
(
shape(R(k)) = t̂, L1 ∈ dl1, ..., L2k−3 ∈ dl2k−3

)
= s · exp

(
− s2/2

)
dl1...dl2k−3,

where s :=
∑2k−3

i=1 li , and

for each k ∈ N, the subtree spanned by j ≤ k leaves sampled
randomly from {1, 2, ..., k} equals in distribution the tree R(k).

Anita Winter Pruning procedures on trees 79



Aldous’ CRT: A few remarks

P
(
shape(R(k)) = t̂, L1 ∈ dl1, ..., L2k−3 ∈ dl2k−3

)
= s · exp

(
− s2/2

)
dl1...dl2k−3, s :=

2k−3∑
i=1

li .

Remarks.

1 The shape is uniform on the set of possible shapes, the edge
lengths are independent of the shape and edge lengths are
exchangeable.

2 If k = 2, then R(2) has 2 leaves, 1 possible shape, 1 edge, no
internal node. The single edge’s length is Rayleigh distributed,
i.e.,

P
(
L ∈ dl

)
= l · exp

(
− l2/2

)
dl .

Exercise. Show that the right hand side of the above expression is

indeed a probability density function.
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Aldous’ CRT: The line breaking construction

1 Let (C1,C2,C3, ...) be the times of a non-homogeneous Poisson
point process with rate r(t) = t, i.e., for example,

P
{
C1 > t

}
= P

{
no point in [0, t]

}
= e−

∫ t
0 dsr(s) = e−

t2

2 ,

and

P
{
C2 > t

}
=

∫ t

0
ds P

(
C2 > t|C1 = s

)
P
(
C1 ∈ ds

)
=

∫ t

0
ds P

{
no point in [s, t]

}
· se−

s2

2

=

∫ t

0
ds e−

∫ t
s dur(u)se−

s2

2 = t2

2
e−

t2

2 .

2 Let R(1) be a line of length C1 from a root to leaf 1.

3 Inductively, obtain R(k + 1) from R(k) by attaching an edge
of length Ck+1 − Ck to a uniform random point of R(k) (i.e.,
sampled with respect to the normalized Lebesgue measure on the
edges), labeling a new leaf k + 1.
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The line breaking construction: an illustration

1 Let (C1,C2,C3, ...) be the times of a non-homogeneous Poisson
point process with rate r(t) = t.

2 Let R(1) be a line of length C1 from a root to leaf 1.

3 Inductively, obtain R(k + 1) from R(k) by attaching an edge of
length Ck+1 − Ck to a uniform random point of R(k) labeling a
new leaf k + 1.

s
C1

s
C2

s
C3

s
C3

s
C4
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Aldous’ CRT: analysing the density

We have seen that the density of C1 is the right Rayleigh
distribution. We proceed by induction. Let (t∗, x∗1 , ..., x

∗
2k+1) be a

binary tree with k + 1 leaves, shape t and 2k + 1 edge lengths x∗1 ,
..., x∗2k+1, and Let (t, x1, ..., x2k−1) be the associated binary tree
spanned by the leaves {1, 2, ..., k}.

By construction, t∗ is obtained from t by splitting an edge xj for
some j = 1, ..., 2k − 1 into two edges of lengths x∗j1 and x∗j2 with
xj = x∗j1 + x∗j2 , and joining leaf k + 1 to that new internal vertex
by an edge x∗j3 = s∗ − s, say.

That is,

f
(
t∗, x∗1 , ..., x

∗
2k+1

)
= f
(
t, x1, ..., x2k−1

)
s∗ · e− 1

2 ((s∗)2−s2) · s−1,

where s−1 is the probability density that the (k + 1)st edge is
attached at a particular place in the existing tree.

Finally, by exchangeability of the edge lengths consistency
immediately follows.
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The Continuum Random Tree (CRT): an illustration

Several simulations of THE CRT can be found on the home page of
Jean-François Marckert, e.g.,
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Consequences of the stick breaking construction

Let (C1, C2, C3, ...) be the times of a non-homogeneous Poisson point process with rate r(t) = t.

Let R(1) be a line of length C1 from a root to leaf 1.

Inductively, obtain R(k + 1) from R(k) by attaching an edge of length Ck+1 − Ck to a uniform
random point of R(k) (i.e., sampled with respect to the normalized Lebesgue measure on
the edges), labeling a new leaf k + 1.

Theorem (Aldous (1991), [2])

For a realization t(2) ⊆ t(3) ⊆ ... of R(2) ⊆ R(3) ⊆ ..., let T be the
completion of

⋃
t(k). The resulting random tree T satisfies:

T is compact, almost surely.

There is a mass measure µ on T with µ(T ) = 1 but
µ(
⋃

k R(k)) = 0, characterized as the weak limit of the uniform
distribution on the leaves {1, 2, ..., k} ⊂ T .

The total length Dk of the edges of R(k) has distribution

P
(
Dk > d

)
= P

(
N(d2/2) ≤ k − 1

)
,

where N(ν) has Poisson(ν)-distribution.
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Aldous’ CRT is the Brownian CRT

Definition (Aldous’ CRT)

Let us define the Aldous’ CRT as the random tree T arising from the
line-breaking construction, and additionally equipped with the mass
measure.

Theorem (Aldous (1993), [1])

The Brownian CRT and Aldous’ CRT are the same.
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Aldous’ CRT is the Brownian CRT

Strategy of proof.

1 Aldous introduced the following notion of convergence: a
sequence of “measured R-trees” converges to a limiting measured
R-tree if and only if

all subtrees spanned by a finite sample converge weakly to the
respective subtree in the discrete topology.

2 He then shows that GW-tree conditioned to have total progeny n
and with edge lengths rescaled by 1√

n
converges to the Aldous’

tree.

3 As we will see in Part III the latter characterizes the limiting
tree uniquely.

4 We know from the converge result of contour functions that the
limit must be the Brownian CRT.
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Aldous’ rescaling result

Theorem (Aldous (1993), [1])

Let Gn be the GW-tree with critical offspring distribution of finite
variance σ2 > 0 conditioned on n leaves labelled by {1, 2, ..., n}. Assign
length σ√

n
to each edge of Gn. Let R(n, k) be the subtree of Tn spanned

by vertices {1, 2, ..., k}. Then for each fixed k ≥ 2,

R(n, k)
w−−−→

N→∞
R(k)

in the sense that the joint distributions of shape and edge lengths
converge to the distribution of Aldous’ CRT.
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A useful representation of tree-lengths

Theorem (Aldous (1993), [1])

Let Bext be the standard Brownian excursion, and U1, U2, ...
independent uniform on [0, 1] variables, independent of Bext. For each
n ≥ 1, let Tn be the subtree of the Brownian CRT [0, 1]|∼2Bext spanned
by 0, U1, U2, ..., and denote the length of Tn by Θn. Then(

Θ1,Θ2,Θ3, ...
) d

=
(√

2X1,
√

2(X1 + X2),
√

2(X1 + X2 + X3), ...
)
,

where X1, X2, ... are independent rate 1 exponentially distributed.

Proof. We rely on the line-breaking construction for Aldous’ CRT.

For k = 1, notice that for all x > 0

P
{

Θ1 > x
}

= P
{
D1 > x

}
= e−

x2

2 ,

while on the other hand

P
{√

2X1 > x
}

= P
{
X1 >

x2

2

}
= e−

x2

2 .

The general case I will leave for you as an exercise.
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Yet another home work problem

Exercise. Use the latter to show that (D1, ...,Dk) has joint density

f(D1,...,Dk )(`1, ..., `k) = `1 · `2 · ... · `ke−
`2
k
2 1{0 < `1 < `2 < ... < `k}.
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Janson’s result for Galton-Watson trees

Theorem (Janson (2006), [5])

Let Gn be the GW-tree with offspring distribution p(·) conditioned to
have n vertices. Assume that p(·) is critical, p(1) < 1, and p(·) has finite
variance σ2. Then

P
{
N(Gn, ρ) ≥ x

√
nσ
} −→

n →∞ e−x
2/2.
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Factorial moment formula

If v1, ..., vk are vertices in the rooted tree (T , ρ), denote by

LT (v1, ..., vk)

the number of edges in the subtree of T spanned by {ρ, v1, ..., vk}.

Lemma (Factorial moments)

For any rooted tree (T , r), the factorial moments of N(T , ρ) are given by

E
[
N(T , ρ)

(
N(T , ρ)− 1

)
· ...
(
N(T , ρ)− k + 1

)]
= k!

∑
v1,...,vk

∗∗ 1
LT (v1)·LT (v1,v2)·LT (v1,...,vk )

with
∑ ∗∗ denoting the sum over all v1, ..., vk are distinct, 6= ρ, and such

that vi is not a descendent of vj when i < j . In particular,

E
[
N(T , ρ)

]
=
∑
v 6=ρ

1
h(v) .
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Equivalent formulation in terms of records

We use the equivalence of N(T , ρ) and Nvertex(T , ρ).

Nvertex(T , ρ) appears also when we are consider records in a tree.

Let each vertex v have a random value λe attached to it, and
assume that these values are i.i.d. with a continuous distribution.

Say that a value λe is a record if it is the largest value in the
path from the root to e.

Then the number of records equals in distribution Nvertex(T , ρ).

@
@
�
�

@
@
�
�

@
@
�
�

cs s ssss s

ρ

43

56
8

17

2

87

11

To see this, generate first the values λe , and then cut the tree:
each time choosing the vertex with the largest λe among the
remaining ones.
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Proof of factorial moment formula

Write
Nvertex(T , ρ) :=

∑
v 6=ρ

1Av ,

where Av denotes the event that “v is a record”. Thus

Nvertex(T , ρ)
(
Nvertex(T , ρ)− 1

)
· ...
(
Nvertex(T , ρ)− k + 1

)
=

∑
v1,v2,...,vk∈V (T )\{ρ}

1Av1
· ... · 1Avk

= k!
∑

v1,v2,...,vk∈V (T )\{ρ}

1E(v1,...,vk ),

where

E(v1, ..., vk)

:=
{
λv1 < ... < λvk and all are records in T ′

}
=
{
λvj is largest value in T ′(v1, ..., vj) for every j = 1, ..., k

}
.
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Proof continued

Nvertex(T , ρ)
(
Nvertex(T , ρ)− 1

)
· ...
(
Nvertex(T , ρ)− k + 1

)
= k!

∑
v1,v2,...,vk∈V (T )\{ρ}

1{
λvj

is largest value in T ′(v1, ..., vj) for every j=1,...,k
}.

Thus

E
[
N(T , ρ)

(
N(T , ρ)− 1

)
· ...
(
N(T , ρ)− k + 1

)]
= k!

∑
v1,v2,...,vk∈V (T )

∗∗P
{
λvj is largest value in T ′(v1, ..., vj) ∀ j = 1, ..., k

}
= k!

∑∗∗

v1,v2,...,vk∈V (T )

k∏
j=1

1
LT (v1,...,vj )

.
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Convergence to the corresponding moments of the
Brownian CRT

Lemma (Janson (2006), [5])

Let Gn be the GW-tree with critical offspring distribution of finite variance
σ2 > 0 conditioned on total progeny n, and (R(k); k ∈ N) the leaf
labelled finite trees from the line-breaking construction of Aldous’ tree.
Then kth-factorial moments of N(Gn) rescaled by σ−kn−

k
2 converges to

k!E
[(
D1 · D2 · Dk · Dk

)−1]
,

where Dk denotes the total length of R(k), k ∈ N.

Proof. We use that 1
σ
√
n
Gn converges weakly to Aldous’ CRT, and that

the family of kth-factorial moments of N(Gn) indexed by n ∈ N is
uniformly integrable, as∑∗∗

v1,v2,...,vk∈V (G)n

k∏
j=1

1
LGn (v1,...,vj )

≤
( ∑
v∈V (Gn)

L−1
Gn (v)

)k
.
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Identifying the limit distribution as Rayleigh distribution

Let Y be Rayleigh distributed with density fY (dy) = ye−
y2

2 .

Lemma (Janson (2006), [5])

Let (R(k); k ∈ N) the leaf labelled finite trees from the line-breaking
construction of Aldous’ tree, and denote by Dk the total length of R(k),

k ∈ N. Then for k ≥ 1, k!E
[(
D1 · D2 · Dk · Dk

)−1]
= E

[
Y k
]
.

Proof. Recall the joint density

f(D1,...,Dk )(`1, ..., `k) = `1 · `2 · ... · `ke−
`2
k
2 1{0 < `1 < `2 < ... < `k}.

of the Aldous’ tree lengths. Therefore the left hand side equals

k!E
[(
D1 · D2 · ...Dk

)−1]
= k!

∫
{0<`1<`2<...<`k}

d`1d`2...d`k+1

(
`1 · `2 · ... · (`k)

)−1
`1 · `2 · ... · `ke−

`2
k
2

= k!

∫ ∞
0

d`k
`k−1
k

(k−1)!e
− `

2
k
2 =

∫ ∞
0

d` `k+1e−
`2

2 .
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