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Introduction

Computational Linguistics

“Human knowledge is expressed in language. So computational
linguistics is very important’ — Mark Steedman, ACL President
Address, 2007.

@ Use computer to process natural language
o Example 1: Machine Translation (MT)

o 1946, concentrated on Russian — English

o Considerable resources of USA and European countries, but limited
performance

o Underlying theoretical difficulties of the task had been
underestimated.

o Today, there is still no MT system that produces fully automatic
high-quality translations.
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Introduction

Computational Linguistics

Some good results...

English Spanish French  English - detected -~

Google thinks the French are ﬁlmy.|

English Spanish @ French =«

Google pense que les Francais sont sales.
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Introduction

Computational Linguistics

Some bad results...

English Spanish French French-detected ~ ".p

Ukraine : que doivent faire les Européens et les Américains %

)
English | Spanish  Aravic v (R
Ukraine: What should Europeans and
Americans
Fd 1) v
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Introduction

Computational Linguistics

But probably, there will not be for some time!

English Spanish French Viethamese - detected "..
Ong gia di nhanh qua! X

o |
English Spanish Arabic - Translate

He was too old to go fast!
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Introduction

Computational Linguistics

Example 2: Analysis and synthesis of spoken language:

@ Speech understanding and speech generation
@ Diverse applications:

o text-to-speech systems for the blind
e inquiry systems for train or plane connections, banking
o office dictation systems
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Introduction

Computational Linguistics

Example 3: The Winograd Schema Challenge:

@ The customer walked into the bank and stabbed one of
the tellers. He was immediately taken to the emergency
room.

o Who was taken to the emergency room?
o The customer / the teller

@ The customer walked into the bank and stabbed one of
the tellers. He was immediately taken to the police
station.

o Who was taken to the police station?
o The customer / the teller
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Introduction

Job Market

@ Research groups in universities, governmental research labs, large
enterprises.

o In recent years, demand for computational linguists has risen due
to the increase of

o language technology products in the Internet;
o intelligent systems with access to linguistic means

ong Phuong (HUS Deep Learning for Texts August 19, 2016 10 /
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Multi-Layer Perceptron

Linked Neurons

Lé Hong Phuong (HUS) Deep Learning for Texts August 19, 2016 12 / 98



Multi-Layer

Perceptron Model

é) y = sign(6" x +b)

7N

1 T2 TD
@ The most simple ANN with only one neuron (unit), proposed in

1957 by Frank Rosenblatt.

o It is a linear classification model, where the linear function to
prediction the class of each datum x defined as:

1 0T x+b>0
v= —1 otherwise
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Multi-Layer P

Perceptron Model

Each perceptron separates a space X into two halves by hyperplane
67 x+b.
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Multi-Layer P

Perceptron Model

o Add the intercept feature xg = 1 and intercept parameter 6y, the
decision boundary is

ho(x) = sign(o + 0121 + - + Opap) = sign(0 " x)

@ The parameter vector of the model:
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Multi-Laye

Parameter Estimation

o We are given a training set {(x1,v1),..., (XN, yn)}-

o We would like to find # that minimizes the training error:
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where
o d(y,y’) =1if y =y’ and 0 otherwise;
o L(yi, ho(x;)) is zero-one loss.

@ What would be a reasonable algorithm for setting the 67
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Multi-Layer

Parameter Estimation

@ Idea: We can just incrementally adjust the parameters so as to
correct any mistakes that the corresponding classifier makes.

@ Such an algorithm would reduce the training error that counts the
mistakes.

o The simplest algorithm of this type is the perceptron update rule.
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Multi-Layer

Parameter Estimation

@ We consider each training example one by one, cycling through all
the examples, and adjust the parameters according to

0«0 + v X; if Yi 75 hg(Xi).

o That is, the parameter vector is changed only if we make a
mistake.

@ These updates tend to correct the mistakes.
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Multi-Layer

Parameter Estimation

@ When we make a mistake
sign(07 x;) # y; = v:; (07 x;) < 0.
@ The updated parameters are given by
0 =0+yx;
o If we consider classifying the same example after the update, then

Y x; = yi(0 + vixi) " x;
= 0" x; +y; x| %
= yif" x; +| % ||%.

o That is, the value of y;07 x; increases as a result of the update
(become more positive or more correct).
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Multi-Layer

Parameter Estimation

Algorithm 1: Perceptron Algorithm
Data: (Xl’ yl)v (XQ’ 92)7 SRR (XN’ yN)v Yi € {_17 +1}
Result: 0
0« 0;
for t < 1 to T do
for i < 1 to N do
Gi < ho(x:);
if y; # y; then
L 0« 0+ y; x;;
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Layer 1 Layer 2 Layer 8

ho b (x)

@ Many perceptrons stacked into layers.
o Fancy name: Artificial Neural Networks (ANN)
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Multi-Layer

Multi-layer Perceptron

o Let n be the number of layers (n = 3 in the previous ANN).
o Let L; denote the I-th layer; L; is input layer, L,, is output layer.

o Parameters: (6,b) = (6, 6™ 0 5(2)) where 92(;-) represents the
parameter associated with the arc from neuron j of layer [ to
neuron ¢ of layer [ + 1.

Layer | Layer I + 1
o®)

° bz(-l) is the bias term of neuron ¢ in layer (.

Lé Hong Phuong (HUS) Deep Learning for Texts August 19, 2016 22 / 98



Multi-layer Perceptron

The ANN above has the following parameters:
1 1 1
0 9%11; 9% 9%’; @ _ (4@ 2 4@
07 = {0y O3 0o 0 :<911 015 913)
gD ) p(1)
31 Us2 Uss

b = [ () (2 — (b§2>> ,
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Multi-Layer ceptron

Multi-layer Perceptron

o We call az(-l) activation (which means output value) of neuron 7 in
layer [.

o If [ =1 then agl) = ;.

@ The ANN computes an output value as follows:

alV =a;,  Vi=1,2,3

= (D) ) o))
P = (Bl + o)+ o) )
o9 = 1 (B0 + o0+ 00 1)
o9 = (002 + 02 + 03D )

where f() is an activation function.
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Multi-Layer ceptron

Multi-layer Perceptron

@ Denote zz.(lH) — Z;’:l gg)ay) + bgl), then az(l) _ f(z.(l)).

o If we extend f to work with vectors:

f((z1,22,23)) = (f (21), f(22), f(23))

then the activation can be computed compactly by matrix
operations:

22 — g, (1) 4 D)
a® = ¢ (Z(2>>
2B3) — g4 4 @)

ho p(x) = a® =f (z(g)) .
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Multi-Laye

Multi-layer Perceptron

o In a NN with n layers, activations of layer [ + 1 are computed from
those of layer I:

20D — g0 (O 4 O
o) = £(z0),

o The final output:

hop(x) = f (z(”)) .
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Multi-Layer Perceptron

Multi-layer Perceptron

Layer 1 Layer 2 Layer 3 Layer 4
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Multi-Laye

Activation Functions

Commonly used nonlinear activation functions:

@ Sigmoid/logistic function:

1

=17

o Rectifier function:
£(2) = max{0, 2}

This activation function has been argued to be more biologically
plausible than the logistic function. A smooth approximation to
the rectifier is

f(z) =In(1+¢€*)

Note that its derivative is the logistic function.
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Multi-Layer Perceptron

vation Function

Sigmoid function
1 T

Learning f



Multi-Layer Pe

ReLlLU Activation Function

ReLU and an approximation

4 T

=~ RelLU

— softplus
3t i
Pas i
1k i
0 L L Il




Multi-Layer

Training a MLP

@ Suppose that the training dataset has N examples:

{(x1,91), (X2, 92),- -+, (XN, yN) }-

@ A MLP can be trained by using an optimization algorithm.

o For each example (x,y), denote its associated loss function as
J(x,y;0,b). The overall loss function is

1 & pY i G A
:NZJX“‘%’QZ) +—ZZZ(J1)
et =1 i=1 j=1

regularization term

where s; is the number of units in layer [.
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Loss Function

Two widely used loss functions:

@ Squared error:

1
J06,930,0) = 5 lly = hop(x)]*.
@ Cross-entropy:

J(x,9;0,b) = — [ylog(hap(x)) + (1 — y)log(1 — hgp(x))],

where y € {0,1}.
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Multi-Layer

Gradient Descent Algor

o Training the model is to find values of parameters 6, b minimizing
the loss function:
J(6,b) — min.

@ The most simple optimization algorithm is Gradient Descent.
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Multi-Layer Perceptron

Gradient Descent Algorithm

‘:’““""0
(X
\‘\“\“":’:’:o o""'
AN
S ",:,: oz'o':

20N
=N
.‘»500@.““%:"/”[{%{?“\\ “8:::?.',

ST

@ Since J(6,b) is not a convex function, the optimal value may not

be the globally optimal one.
@ However in practice, the gradient descent algorithm is usually able

to find a good model if the parameters are initialized properly.

August 19, 2016 34 /
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Gradient Descent

In each iteration, the gradient descent algorithm updates parameters
0,b as follows:

W _ 0 0
0y =0, 0 J(0,b)
ij
) = bl — a—al J(6,b),
apY

7

where « is a learning rate.
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Multi-Layer Perceptron

Gradient Descent Algorithm

‘We have

N
8 1 0

i i=1
Here, we need to compute partial derivatives

0

WJ(XM Yis 97 b)

i

%J(X’Lu Yis 97 b)7
o0l

How can we compute efficiently these partial derivatives? By using the
back-propagation algorithm.
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Multi-Layer Per ron The Back-propagation Algorithm

Outline

© Multi-Layer Perceptron
@ The Back-propagation Algorithm
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tron The Back-propagation Algorithm

Thuat toan lan truyén ngugc

o Trudc tién, v6i mdi dit lieu (x,y), ta tinh toan tién qua mang
no-ron dé tim moi kich hoat, gdm ca gid tri ra hg p(x).

@ V6i mdi don vi i clia 16p [, ta tinh mot gia tri goi 1a sai s6 EZ(-l), do
phan déng gop ciia don vi d6 vao tong sai s6 clia dau ra.

@ V6i l6p ra | = n, ta c6 thé truc tiép tinh duge 62(-”) v6i moi don vi ¢

ctia 16p ra bang cach tinh do lech ciia kich hoat tai don vi i d6 so
v6i gia tri ding. Cu thé 1, véi moii =1,2,...,s,:

0 1
o = gl = 1P
A

Lé Hong Phuong (HUS) Deep Learning for Texts August 19, 2016 38 / 98



Thuat toan lan truyén ngugc

@ V6i mbi don vi an, sgl) dugce xéc dinh 1a trung binh c6 trong trén

cac sai s6 clia cac don vi clia 16p tiép theo c6 st dung don vi nay
2 1s X N
de lam dau vao.

Lép | Lop [+ 1

o

Jit

@ @

l 1) (I+1 l
el = | Y00 ).

®

Mo

Jst @
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tron The Back-propagation Algorithm

Thuat toan lan truyén ngugc

@ Tinh toan tién, tinh moi kich hoat ctia cac 16p Lo, L3 ..., L,.
© V6i mdi don vi ra i ctia 16p ra Ly, tinh

52(-”) = —(yi — a§”))a§")(1 — agn)).

@ Tinh cac sai s6 theo thit ty nguge: v6i moi lI6p [ =n—1,...,2 va
v6i moi don vi 7 cua 16p [, tinh

Si4+1

1) _(14+1) l
Zeﬁz AR FACD!

@ Tinh cic dao ham riéng can tim nhu sau:

9 (1) (1)
89()J(X Y3 0,0) =¢; " a;
5’ (1+1)

(%(l) J(x,y;0,b) =¢; .
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tron The Back-propagation Algorithm

Thuat toan lan truyén ngugc

o Ta c6 thé biéu dién thuat toan trén ngin gon hon thong qua cac
phép toan trén ma tran.

o Ki hiéu e 13 toan tit nhan ting phan tit clia cac véc-to, dinh nghia
nhu sau:!

x=(x1,...,2p),y = (Yy1,...,Yp) = x0y = (T1Y1,22Y2, ..., TDYD)-

o Tuong ty, ta mé rong cac ham f(-), f/(-) cho timg thanh phan cta
véc-to. Vi du:

1’I‘rong Matlab/Octave thi e 1a phép toan “.x”, con goi la tich Hadamard.
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Multi-Laye: ;ron The Back-pr tion Algorithm

Thuat toan lan truyén ngudgc

© Thuyc hién tinh toan tién, tinh moi kich hoat ctia céc 16p Lo, L3 . ..

cho t6i 16p ra Ly,:
L) — g0 (1) 4 @

o) = £(z0),
@ Vi 16p ra Ly, tinh
L) = —(y— a) 0 (=)
Q Véimoilépl=n—1,n—2,...,2, tinh
0 — ((9(1))T€(l+1)> o f(z0).

@ Tinh cic dao ham riéng can tim nhu sau:

0 T
. _ (41 )
500 J(x,y;0,b) = ¢ (a )
0
. _ (41
20 J(x,y;0,b) =",
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Multi-Layer Perceptron The Back-propagation Algorithm

Gradient Descent Algorithm

Algorithm 2: Thuat toan gidm gradient huan luyén mang no-ron
for /=1 tondo
| VOO «—0; Vb 0
fori=1 to N do
Tinh 5 J(xl,yl,H b) va 8b(l> J(xi,9i;0,b);
VoW <— v0<l> 9( wJ (xi, i3 0, b);
Vb0 Vb + B J (%, i3 0, b);
o — ) _ o (Nvg(l) %g(l));
b — p() — o (%Vb(l));

Ki hieu V6" 1a ma tran gradient ctia 8% (ciing s6 chidu véi 60)) va
VbW 1a véc-to gradient ctia b?) (cting s6 chiéu véi b1).

Lé Hong Phuong (HUS) Deep Learning for Texts August 19, 2016 43 / 98



Multi-Layer Per ron Distributed Word Representations

Outline

© Multi-Layer Perceptron

o Distributed Word Representations
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Distribut rd Representations

@ One-hot vector representation:
By = (0,0,...,1,...,0,0) € {0,1}VI, where |V] is the size of a
dictionary V.

o Vis large (e.g., 100K)

o Try to represent w in a vector space of much lower dimension,
Ty € R? (e.g., D = 300).
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Multi-La 0 Distributed

pw=the CZNOUN pt=DET w=dog&pw=the
w=dog i \ \ w=dog&pt=DET / w=chair&pt=DET
=0 i 0 2 0 e 0515 O B (o SRR | 0. FA 1 W s Y PRSRR 11 T ¢ S )|

(b)

X = Eﬂ 26, 0.25, -0.39, -0.07, 0.13, -0. 17”@-0.&3, -0.37,-0.12, 0:13, -0.11, 0. 341(-0,04, 0.50, 0.04, 0 JMB

NOUN (0.16, 0.03, -0.17, -0.13)

chair| (-0.37.-0.23, 0.33, 0.38, -0.02, -0.37) (041, 0.08, 0.44, 0.02)

on| (-0.21,-0.11, -0.10, 0.07, 0.37, 0.15) VERB
dog | (0.26, 0.25,-0.39, -0.07, 0.13,-0.17)

DET | (-0.04,050,0.04, 0.44)
ADJ (-0.01, -0.35, -0.27, 0.20)

the | (-0.43,-0.37,-0.12, 0.13,-0.11, 0.34) PREP | (-0-26,0.28,-0.34, -0.02)

mouth | E - - -
(-0.32, 0.43, ﬂ.'l:l. 0.50, -0.13, -0.42) ADV (0.02, -0.17, 0.46, -0.08)

gone | {0.06,-0.21, -0.38, -0.28, -0.16, -0.44)

POS Embeddings

Word Embeddings

(Yoav Goldberg, 2015)
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Multi-Layer Perc 0 i buted Word Represer

Distributed Word Representations

@ Word vectors are essentially feature extractors that encode
semantic features of words in their dimensions.

@ Semantically close words are likewise close (in Euclidean or cosine
distance) in the lower dimensional vector space.

ong Phuong (HUS Deep Learning for Texts August 19, 2016 47 /



Multi-Layer Perceptron Distributed Word Representations

Distributed Word Representations
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Multi-Layer Pe tron Distributed Word Representations

Distributed Representation Models

o CBOW model?
o Skip-gram model?
@ Global Vector (GloVe)*

2T, Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” in Proceedings of Workshop at ICLR, Scottsdale, Arizona, USA, 2013

3. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” in Advances in Neural Information Processing
Systems 26, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds.

Curran Associates, Inc., 2013, pp. 3111-3119

47. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,”
in Proceed’mgs of EMNLP, Doha, Qatar, 2014, pp. 1532-1543
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Distributed Word Representations

Skip-gram Modei

o A sliding window approach, looking at a sequence of 2k + 1 words.

@ The middle word is called the focus word or central word.
o The k words to each side are the contezts.

@ Prediction of surrounding words given the current word, that is to
model P(clw).

o This approach is referred to as a skip-gram model.

input projection output
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Multi-Layer Perc on Distributed Word Represer

Skip-gram Model

o Skip-gram seeks to represent each word w and each context c as a
d-dimensional vector w and €.

o Intuitively, it mazimizes a function of the product (,¢) for (w,c)
pairs in the training set and minimizes it for negative examples
(’UJ, CN)'

@ The negative examples are created by randomly corrupting
observed (w, ¢) pairs (negative sampling).

o The model draws k contexts from the empirical unigram
distribution P(c) which is smoothed.

ong Phuong (HUS Deep Learning for Texts August 19, 2016 51 /



Multi-Layer eptron Distributed Word Representations

Skip-gram Model — Technical Details

@ Maximize the average conditional log probability

T c
%Z > log p(wejlw),

t=1 j=—c
where {w; : ¢ € T'} is the whole training set, w; is the central word

and the w1 ; are on either side of the context.

o The conditional probabilities are defined by the softmax function

exp(o, ip)

> exp(0yip)’
weyY

plalb) =

where i, and o, are the input and output vector of w respectively,
and V is the vocabulary.
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n Distributed W

Skip-gram Model — Technical Details

o For computational efficiency, Mikolov’s training code approximates
the softmax function by the hierarchical softmax, as defined in

@ F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language
model,” in Proceedings of AISTATS, Barbados, 2005, pp. 246-252

o The hierarchical softmax is built on a binary Huffman tree with
one word at each leaf node.
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Multi-Layer Distributed Word Representations

Skip-gram Model — Technical Details

@ The conditional probabilities are calculated as follows:

l

p(alp) = [ [ p(di(a)ldi (a)...di-1(a),b),

=1

where [ is the path length from the root to the node a, and d;(a) is
the decision at step ¢ on the path:

¢ 0 if the next node is the left child of the current node
o 1 if it is the right child
o If the tree is balanced, the hierarchical softmax only needs to
compute around log, |V| nodes in the tree, while the true softmax
requires computing over all |V| words.

o This technique is used for learning word vectors from huge data
sets with billions of words, and with millions of words in the
vocabulary.
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Multi-Layer Perceptron Distributed Word Representations

Skip-gram Model

@ Skip-gram model has been recently shown to be equivalent to an
implicit matriz factorization method® where its objective function
achieves its optimal value when

(W, ¢) = PMI(w, c¢) — logk,

where the PMI measures the association between the word w and

the context c: N
P(w,c)

PMI(w, ¢) = log m

50. Levy, Y. Goldberg, and I. Dagan, “Improving distributional similarity with
lessons learned from word embeddings,” Transaction of the ACL, vol. 3, pp.
211-225, 2015
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Multi-Layer P 0 Distributed Word Representations

GloVe Model

@ Similar to the Skip-gram model, GloVe is a local context window
method but it has the advantages of the global matrix
factorization method.

@ The main idea of GloVe is to use word-word occurrence counts to
estimate the co-occurrence probabilities rather than the
probabilities by themselves.

o Let P;; denote the probability that word j appear in the context of
word i; @; € R% and wj € R? denote the word vectors of word i
and word j respectively. It is shown that

@} iy = log(P;) = log(Cyj) — log(Ci),

7

where Cj; is the number of times word j occurs in the context of
word 1.
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Multi-Layer P 0 Distributed Word Representations

GloVe Model

o It turns out that GloVe is a global log-bilinear regression model.
o Finding word vectors is equivalent to solving a weighted

least-squares regression model with the cost function:

[V
J =" f(Cij) (@] @5 + bi + bj — og(Ciy))?,
ij=1
where b; and b; are additional bias terms and f(Cj;) is a weighting
function.

o A class of weighting functions which are found to work well can be

parameterized as
Y @ ‘f
if * < Tmax
1

otherwise
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Convolutional Neural Networks

Convolutional Neural Nétwmks — CNN

o A CNN is a feed-forward neural network with convolution layers
interleaved with pooling layers.
o In a convolution layer, a small region of data (a small square of

image, a text phrase) at every location is converted to a
low-dimensional vector (an embedding).

o The embedding function is shared among all the locations, so that
useful features can be detected irrespective of their locations.

@ In a pooling layer, the region embeddings are aggregated to a
global vector (representing an image, a document) by taking
component-wise maximum or average

@ max pooling / average pooling.

@ Map-Reduce approach!
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Convolutional Neural Networks — CNN

O =
e

E:O
PO o
-
OlRr|Rr|R|O

[
olo|lr|o|o
N

Oi,_"O

@ The sliding window is called a kernel, filter or feature detector.
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Convolutional Neural Net

Convolutional Neural Netwmks — CNN

@ Originally developed for image processing, CNN models have
subsequently been shown to be effective for NLP and have
achieved excellent results in:

¢ semantic parsing (Yih et al., ACL 2014)

search query retrieval (Shen et al., WWW 2014)

sentence modelling (Kalchbrenner et al., ACL 2014)
sentence classification (Y. Kim, EMNLP 2014)

text classification (Zhang et al., NIPS 2015)

other traditional NLP tasks (Collobert et al., JMLR 2011)

¢ © ¢ ¢ ¢
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Convolutional Neural Networks — CNN

Stride Size

o Stride size is a hyperparameter of CNN which defines by how
much we want to shift our filter at each step.

o Stride sizes of 1 and 2 applied to 1-dimensional input:®

=2 || 2 1 2 1 -2 1 1

0 1 2 |1 11 -3(f 0 0 1 2|1 1]-3| 0

o The larger is stride size, the fewer applications of the filter and
smaller output size are.

Shttp://cs231n. github.io/convolutional-networks/
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Convolutional Neural Net

Pooling Layers

@ Pooling layers are a key aspect of CNN, which are applied after
the convolution layers.

@ Pooling layers subsample their input.

® We can either pool over a window or over the complete output.

111124

max pool with 2x2 filters
5|6 | 7 | 8 |andstride?2 6 | 8
3 | 2 i 3| 4
1123 |4
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Convolutional Neural Networks — CNN

Why Pooling?

o Pooling provides a fixed size output matrix, which is typically
required for classification.

o 10K filters — max pooling — 10K-dimensional output, regardless of
the size of the filters, or the size of the input.
@ Pooling reduces the output dimensionality but keeps the most
“salient” information (feature detection)

o Pooling provides basic invariance to shifting and rotation, which is
useful in image recognition.

@ However, max pooling loses global information about locality of
features, just like a bag of n-grams model.
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Convolutional Neural Ne

CNN for NLP
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Convolutional Module — Techmcal Details

A simple 1-d convolution:
o A discrete input function: g(x) : [1,]] = R
o A discrete kernel function: f(x): [1,k] = R
@ The convolution between f(z) and g(x) with stride d is defined as:

h(y): [1,(l—k+1)/d - R
h(y)=>_ f@)-gly-d—z+c),

where ¢ = k — d + 1 is an offset constant.

o A set of kernel functions f;;(x),Vi =1,2,...,m and
Vi =1,2,...,n, which are called weights.

@ g; are input features, h; are output features.
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Convolutional Neural Net CNN

Max-Pooling Module — lechnical Details

o A discrete input function: g(x) : [1,]] = R

@ Max-pooling function is defined as
h(y):[1,0—k+1)/d — R

h(y) = m@;cg(y d—x+c),

where ¢ = k — d + 1 is an offset constant.
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Convolutional Neural Networks NN

Building a CNN Architecture

There are many hyperparameters to choose:

o Input representations (one-hot, distributed)
Number of layers
Number and size of convolution filters
Pooling strategies (max, average, other)

Activation functions (ReLU, sigmoid, tanh)

e © 6 ¢ ¢

Regularization methods (dropout?)
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Convolutional Neural Ne M\ Text Classification

Sentence Clasmﬁcahon

o Y. Kim” reports experiments with CNN trained on top of
pre-trained word vectors for sentence-level classification tasks.

@ CNN achieved excellent results on multiple benchmarks, improved
upon the state of the art on 4 out of 7 tasks, including sentiment
analysis and question classification.

Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of
EMNLP. Doha, Quatar: ACL, 2014, pp. 1746-1751
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Convolutional Neural Netwo

s — CNN

Sentence Classification

Text Classification

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 45.0 | 82.7 | 89.6 | 91.2 | 79.8 | 834
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 93.4 | 93.6 | 84.3 | 89.5
CNN-multichannel 81.1 474 | 88.1 | 93.2 | 92.2 | 85.0 | 89.4
RAE (Socher et al., 2011) 77T | 432 82.4 - - - 86.4
MV-RNN (Socher et al., 2012) 79.0 | 444 | 829 - - - -
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 - 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) - 48.7 | 87.8 - - - -
CCAE (Hermann and Blunsom, 2013) 77.8 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 — — - — — 86.3
NBSVM (Wang and Manning, 2012) 79.4 - - 93.2 - 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 — — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 - - 93.4 - 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 - - 93.6 - 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 — — - — 81.4 86.1
CRF-PR (Yang and Cardie, 2014) - - - - - 82.7 -
SVMg (Silva et al., 2011) — — — — 95.0 — —
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Character-level CNN for Text Classification

o Zhang et al.® presents an empirical exploration on the use of
character-level CNN for text classification.

o Performance of the model depends on many factors: dataset size,
choice of alphabet, etc.

@ Datasets:

Dataset Classes Train Samples Test Samples Epoch Size
AG’s News 4 120,000 7,600 5,000
Sogou News 5 450,000 60,000 5,000
DBPedia 14 560,000 70,000 5,000
Yelp Review Polarity 2 560,000 38,000 5,000
Yelp Review Full 5 650,000 50,000 5,000
Yahoo! Answers 10 1,400,000 60,000 10,000
Amazon Review Full 5 3,000,000 650,000 30,000
Amazon Review Polarity 2 3,600,000 400,000 30,000

8X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in Proceedings of NIPS, Montreal, Canada, 2015
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Convolutional Neural Networks — CNN Text Classification

Character-level CNN for Text Classification

Table 4: Testing errors of all the models. Numbers are in percentage. “Lg” stands for “large” and
“Sm™ stands for “small”. “w2v” is an abbreviation for “word2vec”, and “Lk” for “lookup table”.
“Th” stands for thesaurus. ConvNets labeled “Full” are those that distinguish between lower and
upper letters

Model AG  Sogou DBP. YelpP. YelpF. Yah. A. Amz. F  Amz P
BoW .19 7.5 339 7.76 42.01 31.11 45.36 9.60
BoW TFIDF 1036 6.55  2.63 6.34 40.14 28.96 44,74 9.00
ngrams 796 292 1.37 4.36 43.74 31.53 45.73 7.98
ngrams TFIDF 7.64 281 1.31 4.56 45.20 31.49 47.56 8.46
Bag-of-means 1691 1079 9.55 12.67 47.46 39.45 55.87 18.39
LSTM 13.94 482 1.45 5.26 41.83 29.16 40.57 6.10
Lg. w2v Conv. 992  4.39 1.42 4.60 40.16 31.97 44.40 5.88
Sm. w2v Conv. 11.35 454 1.71 5.56 42.13 31.50 42.59 6.00
Lg. w2v Conv. Th. ~ 9.91 - 1.37 4.63 39.58 31.23 43.75 5.80
Sm. w2v Conv. Th.  10.88 - 1.53 5.36 41.09 29.86 42.50 5.63
Lg. Lk. Conv. 855 495 1.72 4.89 40.52 29.06 45.95 5.84
Sm. Lk. Conv. 10.87 493 1.85 5.54 41.41 30.02 43.66 5.85
Lg. Lk. Conv. Th. 8.93 - 1.58 5.03 40.52 28.84 42.39 5.52
Sm. Lk. Conv. Th. ~ 9.12 - 1.77 5.37 41.17 28.92 43.19 5.51
Lg. Full Conv. 9.85 8.80 1.66 5.25 38.40 29.90 40.89 5.78
Sm. Full Conv. 11.59 895 1.89 5.67 38.82 30.01 40.88 5.78
Lg. Full Conv. Th. 9.51 - 1.55 4.88 38.04 29.58 40.54 5.51
Sm. Full Conv. Th.  10.89 - 1.69 5.42 37.95 29.90 40.53 5.66
Lg. Conv. 1282 4.88 1.73 5.89 39.62 29.55 41.31 5.51
Sm. Conv. 15.65  8.65 1.98 6.53 40.84 29.84 40.53 5.50
Lg. Conv. Th. 13.39 - 1.60 5.82 3930 28.80 40.45 4.93
Sm. Conv. Th. 14.80 - 1.85 6.49 40.16 29.84 40.43 5.67
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nvolutional Neural Net < >N Relation Extraction

Relation Extraction

@ Learning to extract semantic relations between entity pairs from
text
@ Many applications:
¢ information extraction
o knowledge base population
@ question answering
o Example:
o In the morning, the President traveled to Detroit —
travelTo(President, Detroit)
9 Yesterday, New York based Foo Inc. announced their
acquisition of Bar Corp. — mergeBetween(Foo Inc., Bar
Corp., date)

o Two subtasks: Relation extraction (RE) and relation classification
(RC)
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Convolutional Neural Net — CNN Relation Extraction

Relation Extraction

@ Datasets:

o SemEval-2010 Task 8 dataset for RC
o ACE 2005 dataset for RE

@ Class distribution:

ACE 2005 (87,512) SemEval 2010 (10,717)
Relation % | Relation %
ORG-AFF 2.8 | Cause-Effect 12.4
PER-SOC 1.2 | Component-Whole | 11.7
ART 1.0 | Entity-Destination | 10.6
PART-WHOLE 1.4 | Entity-Origin 9.1
GEN-AFF 1.1 | Product-Producer 8.8
PHYS 2.1 | Member-Collection 8.6
Other 90.4 | Message-Topic 8.4

Content-Container 6.8
Instrument-Agency 6.2
Other 17.4
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eural — CNN Relation Extraction

Relation Extraction

Performance of Relation Extraction systems®

System P R F

Words 54,95 | 43.73 | 48.69
Words-WC-Wed | 50.10 | 44.47 | 47.11
Words-HM-Wed | 57.01 | 55.74 | 56.36
Our CNN 71.25 | 53.91 | 61.32

CNN outperforms significantly 3 baseline systems.

9T, H. Nguyen and R. Grishman, “Relation extraction: Perspective from convolutional neural
networks,” in Proceedings of NAACL Workshop on Vector Space Modeling for NLP, Denver,
Colorado, USA, 2015

Lé Hong Phuong (HUS) Deep Learning for Texts August 19, 2016 77/ 98



Convolutional Neural s — CNN Relation Extraction

Relation Classification

Classifier ‘ Feature Sets ‘ F

SVM POS, WordNet, morphological features, the- | 77.7
sauri, Google n-grams
MaxEnt | POS, WordNet, morphological features, noun | 77.6
compound system, thesauri, Google n-grams
SVM POS, WordNet, morphological features, de- | 82.2
pendency parse, Levin classes, PropBank,
FrameNet, NomLex-Plus, Google n-grams,
paraphrases, TextRunner

CNN - 82.8

CNN does not use any supervised or manual features such as POS,
WordNet, dependency parse, etc.
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Recurrent Neural Networks — RNN

Recurrent Neural Networks — RNN

Recently, RNNs have shown great success in many NLP tasks:
o Language modelling and text generation
@ Machine translation
@ Speech recognition
°

Generating image descriptions
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Recurrent Neural Networks — RNN

Recurrent Neural Networks — RNN

@ The idea behind RNN is to make use of sequential information.

@ We can better predict the next word in a sentence if we know which
words came before it.

® RNNs are called recurrent because they perform the same task for
every element of a sequence.

é 0 0, O
A A
VT Vv V VT
So:jv w Osr—i N Osr OSH»J
Unfold: p W w

g U I

X X X
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@ x; is the input at time step ¢ (one-hot vector / word embedding)

@ sy is the hidden state at time step ¢, which is caculated using the
previous hidden state and the input at the current step:

s = tanh(Uzy + Ws—1)
@ o, is the output at step ¢:

o; = softmax(V's;)
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Recurrent Neural Networks — RNN

Recurrent Neural Networks — RNN

@ Assume that we have a vocabulary of 10K words, and a hidden
layer size of 100 dimensions.

@ Then we have,

s, € R0
U e R100x10000

Ve RIOOOOX 100

W e RIOOX 100

where U,V and W are parameters of the network we want to learn
from data.

@ Total number of parameters = 2,010, 000.
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Rec Neural Networks — RNN

aining RNN

@ The most common way to train a RNN is to use Stochastic
Gradient Descent (SGD).

@ Cross-entropy loss function on a training set:

L(y,0) = —— Z Ynlog o,

@ We need to calculate the gradients:

oL oL oL
ou’ v’ oW’
@ These gradients are computed by using the back-propagation

through time'? algorithm, a slightly modified version of the
back-propagation algorithm.

0p j. ‘Werbos, “Backpropagation through time: What it does and how to do it,” in
Proceedings of the IEEE, vol. 78, no. 10, 1990, pp. 1550-1560
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Recurrent Neural Networks — RNN

Training RNN — The Vanishing Gradient Prob

@ RNNs have difficulties learning long-range dependencies because
the gradient values from “far away” steps become zero.

o I grew up in France. I speak fluent French.

@ The paper of Pascanu et al.'' explains in detail the vanishing and

exploding gradient problems when training RNNs.
o A few ways to combat the vanishing gradient problem:

o Use a proper initialization of the W matrix

Use regularization techniques (like dropout)

Use ReLU activation functions instead of sigmoid or tanh functions
More popular solution: use Long Short Term Memory (LSTM) or
Gated Recurrent Unit (GRU) architectures.

¢ © ¢

1R, Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in Proceedings of ICML, Atlanta, Georgia, USA, 2013
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Long-Short Term Memory — LSTM

o LSTMs were first proposed in 1997.'2 They are the most widely
used models in DL for NLP today.

o LSTMs use a gating mechanism to combat the vanishing
gradients.?

@ GRUs are a simpler variant of LSTMs, first used in 2014.

125, Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735-1780, 1997

13http://colah.github. io/posts/2015-08-Understanding-LSTMs/
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Long- Shoft Term Mem01y LSTM

|

GRU/LSTM
Unit

|
@

@ A LSTM layer is just another way to compute the hidden state.

St—1 ——— — St41

@ Recall: a vanila RNN computes the hidden state as

s¢ = tanh(Uzy + Ws_1)
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How LSTM calculates a hidden

state s;: \I.(_
’L':U(szt-i-WSt 1) —
f = ( xt + WfSt_l) f C‘;
0= ‘e + WOsi_1)
. . t C —>®<—IN

= tanh(UY%x; + W9s4_1)

cc=c_1-f+g-1 o_ - OUT

st = tanh(cy) - o

o is the sigmoid function, which squashes the
values in the range [0, 1]. Two special cases:

@ 0: let nothing through
@ 1: let everything though
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Recurrent Neural Networks — RNN Generating Image Description

Generating Image Description

“man in black shirt is playing gui- “two young girls are playing with
lego toy.”

(http://cs.stanford.edu/people/karpathy/deepimagesent/)
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Recurrent Neural Networks — RNN Generating Image Description

Generating Image Description

“black and white dog jumps over “woman is holding bunch of ba-
bar.” nanas.”
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Recurrent Neural Networks — RNN Generating Text

Language Modelling and Generating Text

@ Given a sequence of words we want to predict the probability of
each word given the previous words.
o Language models allow us to measure how likely a sentence is
e an important input for machine translation and speech recognition:
high-probability sentences are typically correct
o We get a generative model, which allows us to generate new text
by sampling from the output probabilities.
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Recurrent Neural Net — RNN Generating Text

Language Modelling and Generating Text

Samples from the Wikipedia model:

The meaning of life is the tradition of the ancient human repro-
duction: it is less favorable to the good boy for when to remove
her bigger. In the show’s agreement unanimously resurfaced. The
wild pasteured with consistent street forests were incorporated
by the 15th century BE. In 1996 the primary rapford undergoes
an effort that the reserve conditioning, written into Jewish cities,
sleepers to incorporate the .St Eurasia that activates the popula-
tion. Mar??a Nationale, Kelli, Zedlat-Dukastoe, Florendon, Ptu’s
thought is. To adapt in most parts of North America, the dynamic
fairy Dan please believes, the free speech are much related to the

(Extracted from'?)

14y, Sutskever, J. Martens, and G. Hinton, “Generating text with recurrent neural networks,”
in Proceedings of ICML, Washington, USA, 2011
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Recurrent Neural Networks — RNN Generating Text

Language Modelling and Generating Text

Samples from the ML model:

Recurrent network with the Stiefel information for logistic regres-
sion methods Along with either of the algorithms previously (two
or more skewprecision) is more similar to the model with the same
average mismatched graph. Though this task is to be studied un-
der the reward transform, such as (c) and (C) from the training
set, based on target activities for articles a ? 2(6) and (4.3). The
PHDPic (PDB) matrix of cav’va using the three relevant informa-
tion contains for tieming measurements. Moreover, because of the
therap tor, the aim is to improve the score to the best patch
randomly, but for each initially four data sets. As shown in Figure
11, it is more than 100 steps, we used
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Recurrent Neural Networks — RNN Generating Text

Language Modelling and Generating Text

Samples from the VietTreebank model:

Khi phat hién ctia anh <unk> vaAn la DD “ nham tang ” ,
khong it noi nao dé lam_#n tai trung tam x& <unk>, huyén
Phuéc_Son, tinh Ta_ Mo loai bi bat ca chét , doan xtic ao_ 4o
ban trong tam bd tudi .

Nghe nhitng béng ngusi Trung Hoa <unk> dé trong riung tim
ra am_am gidy cta liet _si VN ( M§ dan_tdc vA con nguge mién
Béc nat dé thi cong tir 1998 dén TP Phat gido da bat dau cung
) nén nhitng vong 15 - 4 nga bién .

(Extracted from Nguyén Van Khanh’s thesis, VNU-Coltech 2016)
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Summary

Summary

@ Deep Learning is based on a set of algorithms that attempt to
model high-level abstractions in data using deep neural networks.

o Deep Learning can replace hand-crafted features with efficient
unsupervised or semi-supervised feature learning, and hierarchical
feature extraction.

@ Various DL architectures (MLP, CNN, RNN) which have been
successfully applied in many fields (CV, ASR, NLP).

@ Deep Learning has been shown to produce state-of-the-art results
in many NLP tasks.
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