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Abstract. Size-biased permutation is motivated by applications in species

sampling. In the 1960s, biologists in population genetics were interested in in-
ferring the distribution of alleles in a population through sampling. Size-biased

permutation models the outcome of successive sampling, where one samples

without replacement from the population and records the abundance of newly
discovered species in the order that they appear. To account for the occurrence

of new types of alleles through mutation and migration, biologists considered

random abundance sequences and did not assume an upper limit to the num-
ber of possible types. This leads to the study of size-biased permutation of an

infinite, summable sequence of i.i.d. random variables, in other words, jumps

of a subordinator. We will head towards major results of this theory, starting
with the case of finitely many terms.

These are lecture notes for the Vietnam 2016 Spring School on Combi-
natorial Stochastic Processes. The lecture notes are largely based on Jim’s

textbook ‘Combinatorial Stochastic Processes’, Bertoin’s textbook ‘Random

fragmentation and coagulation processes’, and on my paper with Jim. This is
part of an ongoing effort to update Jim’s textbook and the status of the open

problems in that text.

1. Introduction

1.1. Different ways to think about partitions. In general, for a sequence x =
(x(1), x(2), . . .), write x↓ to denote the same sequence presented in decreasing order.
Let ∆ = {x = (x(1), x(2), . . .) : x(i) ≥ 0,

∑
i x(i) ≤ 1} and ∆↓ = {x↓ : x ∈

∆} be closed infinite simplices, the later contains sequences with non-increasing

terms. Denote their boundaries by ∆1 = {x ∈ ∆ :
∑
i x(i) = 1} and ∆↓1 =

{x ∈ ∆↓,
∑
i x(i) = 1} respectively. Any finite sequence can be associated with an

element of ∆1 after being normalized by its sum and extended with zeros.

Example 1.1 (Mass partitions). Consider a mass T split into countably many
smaller masses s(1), s(2), . . . ≥ 0. If

∑
i s(i) = T , we say that the partition is

conservative (ie: total mass is conserved). If
∑
i s(i) < T , we say that the partition

is dissipative. One can imagine that when the mass splits, a sizeable chunk of
it becomes dust (isolated infinitesimal particles) and dissipate into the air. The
normalized sequence (s(1)/T, . . .) is in ∆. Thus, ∆ is also called the space of mass
partitions.

Example 1.2 (Interval partitions). Represent a mass T as the interval [0, T ], each
point on the interval is an infinitesimal particle making up the mass. Given x ∈ ∆,
represent T · x(1), T · x(2), . . . as lengths of disjoint open intervals on [0, T ]. This is
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called an interval partition representation of T · x. A point u ∈ [0, T ] that does not
belong to the union of such intervals represents a dust.

Example 1.3 (Partition of n). For an integer n, a partition of n is an unordered
set {n1, . . . , nk} of integers summing up to n:

∑
i ni = n. The normalized sequence

(n1/n, . . . , nk/n) is a mass partition. In this case, one can think of the mass as
making up of n indivisible units, each of mass 1.

Example 1.4 (Random mass partition). Here is a simple way to get a random mass
partition. Fix an integer n. Let F be a distribution on (0,∞), mean µ < ∞. Let
X(1), . . . , X(n) be independent and identically distributed (i.i.d) random variables
with distribution F . Define Tn =

∑n
i=1X(i). Then (X(1)/T, . . . ,X(n)/T ) is a

random mass partition with n parts.

Example 1.5 (Stick-breaking). Here is a simple way to get a random interval
partition. Start with a stick of length 1. Choose a point on the stick according to
some distribution F1 supported on [0, 1], ‘break’ the stick into two pieces, discard
the left-hand piece, and rescale the remaining half to have length 1. Repeating this
procedure with distribution F2, and so on. This gives a random mass partition
X = (X(1), X(2), . . .), where

X(1) = Wk

k−1∏
i=1

W i,

where Wi’s are independent, and Wi distributed as Fi.

1.2. Orderings of a partition. Let x = (x(1), . . . , x(n)) ∈ ∆ be a mass partition
with n parts, t =

∑
i x(i). There are three natural ways to order the elements of x.

Decreasing order: x↓.

Exchangeable random order: let σ be a uniformly distributed random permu-
tation of [n]. The mass partition x presented in exchangeable random order is the
random mass partition X = (x(σ1), . . . , x(σn)).

Size-biased order: here X = (x(σ1), . . . , x(σn)), where σ is the random permu-

tation with P(σ1 = i) =
x(i)

t
, and for k distinct indices i1, . . . , ik,

(1) P(σk = ik|σ1 = i1, . . . , σk−1 = ik−1) =
x(ik)

t− (x(i1) + . . .+ x(ik−1))
.

An index i with bigger ‘size’ x(i) tends to appear earlier in the permutation, hence
the name size-biased. Call σ the size-biased order, and call the random sequence
X the size-biased permutation of x.

The size-biased order is important because it is the order in which new elements
appear in a sampling without replacement scheme. For this reason, it is sometimes
called the order of appearance.

Example 1.6 (Size-biased order and sampling without replacement). Let (n1, . . . , nk)
be a vector of integers, ni interpreted as the number of balls of color i (or the num-

ber of animals of species i). Let n =
∑k
i=1 nk be the total number of balls. Sample

without replacement from the set of n balls. Let σ denote the order of colors that
appear. This is a size-biased order.
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Example 1.7 (Kingman’s paintbox and size-biased permutation). Kingman’s paint-
box [5] is a useful way to describe and extend size-biased permutations. For x ∈ ∆,
let sk be the sum of the first k terms. Note that x defines a partition ϕ(x) of
the unit interval [0, 1], consisting of components which are intervals of the form
[sk, sk+1) for k = 1, 2, . . ., and the interval [s∞, 1], which we call the zero compo-
nent. Sample points ξ1, ξ2, . . . one by one from the uniform distribution on [0, 1].
Each time a sample point discovers a new component that is not in [s∞, 1], write
down its size. If the sample point discovers a new point of [s∞, 1], write 0. Let
X∗ = (X∗(1), X∗(2), . . .) be the random sequence of sizes. Since the probability
of discovery of a particular (non-zero) component is proportional to its length, the
non-zero terms in X∗ form the size-biased permutation of the non-zero terms in
x as defined by (1). In the paintbox terminology, the components correspond to
different colors used to paint the balls with labels 1, 2, . . .. Two balls i, j have the
same paint color if and only if ξi and ξj fall in the same component. The size-biased
permutation X∗ records the size of the newly discovered components, or paint col-
ors. The zero component represents a continuum of distinct paint colors, each of
which can be represented at most once.

Example 1.8 (Kingman’s paintbox and random partition of n). Kingman’s paint-
box also gives a random partition of n (or more precisely, a random partition of
[n]). Consider the previous setup. Say that i ∼ j iff ξi and ξj fall on the same
interval (ie: if the two balls have the same color). Then for each n ∈ N, we get a
random partition of the n balls by colors.

We end this section with some questions on the objects we have introduced so
far. We will answer these in the next couple of lectures.

(1) Take the size-biased permutation X∗ of a random partition X (eg: from
i.i.d). What is the distribution of X∗?

(2) When does a random mass partition has the stick-breaking form for in-
dependent stick lengths? When does a size-biased permutation has the
stick-breaking form for independent stick lengths?

2. Size-biased permutation of a finite i.i.d sequence

The size-biased permutation of a random sequence X is defined conditioned
on the sequence’s values. We now focus on the size-biased permutation of an i.i.d
sequence Xn = (Xn(1), . . . , Xn(n)) with finite length n. We will use square brackets
(Xn[1], . . . , Xn[n]) to denote the size-biased permutation, or X∗n, to avoid having
to list out the terms.

Assume that F has density ν1. Let Tn−k = Xn[k + 1] + . . . + Xn[n] denote the
sum of the last n − k terms in an i.i.d. size-biased permutation of length n. For
1 ≤ k ≤ n, let νk be the density of Sk, the sum of k i.i.d. random variables with
distribution F .

We shall write gamma(a, λ) for a Gamma distribution whose density at x is
λaxa−1e−λx/Γ(a) for x > 0, and beta(a, b) for the Beta distribution whose density

at x is
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for x ∈ (0, 1).

2.1. Joint distribution. We first derive joint distribution of the first k terms
Xn[1], . . . , Xn[k].
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Proposition 2.1 (Barouch-Kaufman [1]). We have

P(Xn[1] ∈ dx1, . . . , Xn[k] ∈ dxk)

=
n!

(n− k)!

 k∏
j=1

xj ν1(xj) dxj

 ∫ ∞
0

νn−k(s)

k∏
j=1

(xj + . . .+ xk + s)−1 ds(2)

=
n!

(n− k)!

 k∏
j=1

xj ν1(xj) dxj

 E

 k∏
j=1

1

xj + . . .+ xk + Sn−k

 .(3)

Proof. Let σ denote the random permutation on n letters defined by size-biased
permutation as in (1). Then there are n!

(n−k)! distinct possible values for (σ1, . . . , σk).

By exchangeability of the underlying i.i.d. random variables Xn(1), . . . , Xn(n), it
is sufficient to consider σ1 = 1, . . ., σk = k. Note that

P

(Xn(1), . . . , Xn(k)) ∈ dx1 . . . dxk,

n∑
j=k+1

Xn(j) ∈ ds

 = νn−k(s) ds

k∏
j=1

ν1(xj) dxj .

Thus, restricted to σ1 = 1, . . ., σk = k, the probability of observing (Xn[1], . . . , Xn[k]) ∈
dx1 . . . dxk and Tn−k ∈ ds is precisely

x1

x1 + . . .+ xk + s

x2

x2 + . . .+ xk + s
· · · xk

xk + s
νn−k(s)

 k∏
j=1

ν1(xj) dxj

 ds.

By summing over n!
(n−k)! possible values for (σ1, . . . , σk), and integrating out the

sum Tn−k, we arrive at (2). Equation (3) follows by rewriting. �

Note that Xn[k] = Tn−k+1 − Tn−k for k = 1, . . . , n− 1. Thus we can rewrite (2)
in terms of the joint law of (Tn, Tn−1, . . . , Tn−k):
(4)

P(Tn ∈ dt0, . . . , Tn−k ∈ dtk) =
n!

(n− k)!

(
k−1∏
i=0

ti − ti+1

ti
ν1(ti − ti+1)

)
νn−k(tk) dt0 . . . dtk.

Rearranging (4) yields the following result, which appeared as an exercise in [2,
§2.3].

Corollary 2.2 (Chaumont-Yor [2]). The sequence (Tn, Tn−1, . . . , T1) is an inho-
mogeneous Markov chain with transition probability

(5) P(Tn−k ∈ ds|Tn−k+1 = t) = (n− k + 1)
t− s
t

ν1(t− s) νn−k(s)

νn−k+1(t)
ds,

for k = 1, . . . , n− 1. Together with Tn
d
= Sn, equation (5) specifies the joint law of

(Xn[1], . . . , Xn[n]), and vice versa.

2.2. Stick-breaking representation. For k ≥ 1, conditioned on Tn−k+1 = t,
Xn[k] is distributed as the first size-biased pick out of n−k+1 i.i.d. random variables
conditioned to have sum Sn−k+1 = t. This provides a recursive way to generate a
finite i.i.d. size-biased permutation: first generate Tn (which is distributed as Sn).
Conditioned on the value of Tn, generate Tn−1, let Xn[1] be the difference. Now
conditioned on the value of Tn−1, generate Tn−2 via (5), let Xn[2] be the difference,
and so on.
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Let us explore this recursion from a different angle by considering the ratio

Wn,k :=
Xn[k]

Tn−k+1
and its complement, Wn,k = 1−Wn,k =

Tn−k
Tn−k+1

. For k ≥ 2, note

that

(6)
Xn[k]

Tn
=

Xn[k]

Tn−k+1

Tn−k+1

Tn−k+2
· · · Tn−1

Tn
= Wn,k

k−1∏
i=1

Wn,i.

The variables Wn,i can be interpreted as residual fractions in a stick-breaking
scheme: start with a stick of length 1. Choose a point on the stick according
to distribution Wn,1, ‘break’ the stick into two pieces, discard the piece of length
Wn,1 and rescale the remaining half to have length 1. Repeating this procedure
k times, and (6) is the fraction broken off at step k relative to the original stick
length.

Together with Tn
d
= Sn, one could use (6) to compute the marginal distribution

for Xn[k] in terms of the ratios Wn,i. In general the Wn,i are not necessarily
independent, and their joint distributions need to be worked out from (5).

Lukacs [6] proved that if X,Y are non-degenerate, positive independent random
variables, then X + Y is independent of X

X+Y if and only if X ∼ gamma(a, λ),

Y ∼ gamma(b, λ) for some parameters a, b, λ. In this case, X
X+Y ∼ beta(a, b), and

X + Y ∼ gamma(a+ b, λ). This leads to the following.

Proposition 2.3 (Patil-Taillie [7]). Consider the stick-breaking representation in
(6) of the size-biased permutation of an i.i.d sequence with distribution F . The
random variables Tn and the Wn,1, . . . ,Wn,n−1 in (6) are mutually independent if
and only if F is gamma(a, λ) for some a, λ > 0. In this case,

Xn[1] = γ0β1

Xn[2] = γ0β̄1β2

. . .

Xn[n− 1] = γ0β̄1β̄2 . . . β̄n−2βn−1

Xn[n] = γ0β̄1β̄2 . . . β̄n−1

where γ0 has distribution gamma(an, λ), βk has distribution beta(a+ 1, (n− k)a),
β̄k = 1 − βk for 1 ≤ k ≤ n − 1, and the random variables γ0, β1, . . . , βn−1 are
independent.

Proof. It is sufficient to consider the first stick-break. Note that
(7)

P(Xn[1]/Tn ∈ du, Tn ∈ dt) = nuP
(

Xn(1)

Xn(1) + (Xn(2) + . . .+Xn(n))
∈ du, Tn ∈ dt

)
.

Suppose F = gamma(a, λ). Since Xn(1)
d
= gamma(a, λ), Sn−1 = Xn(2) + . . . +

Xn(n)
d
= gamma(a(n − 1), λ), independent of Xn(1), the ratio Xn(1)

Xn(1)+Sn−1
has

distribution beta(a, a(n− 1)) and is independent of Tn. Thus

P(Xn[1]/Tn ∈ du) = nu
Γ(a+ a(n− 1))

Γ(a)Γ(a(n− 1))
ua−1(1− u)a(n−1)−1

=
Γ(a+ 1 + a(n− 1))

Γ(a+ 1)Γ(a(n− 1))
ua(1− u)a(n−1)−1.
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In other words, Xn[1]/Tn
d
= beta(a, a(n − 1)). This proves the if direction. Now

suppose Wn,1 = Xn[1]/Tn is independent of Tn. Reverse the argument, this implies
that Xn(1) is independent of Xn(1)/Tn. Apply Lukacs’ theorem for X = Xn(1),
Y = Xn(2) + . . .+Xn(n), we see that F must be the gamma distribution. �

3. Size-biased permutation of an infinite i.i.d sequence

3.1. Subordinator as limit of i.i.d. We now want to send n→∞, and derive the
analogue of the above results on the infinite simplex ∆. First, we need an infinite
sequence of i.i.d random variables X = (X(1), X(2), . . .) that is a.s. summable
T :=

∑
iX(i) <∞. This condition is necessary since we will divide by T to obtain

a distribution on ∆.
Let ((Xn), n ≥ 1) be an i.i.d. positive triangular array, that is, Xn = (Xn(1), . . . , Xn(n)),

where Xn(i), i = 1, . . . , n are i.i.d. and a.s. positive. Write Tn for
∑n
i=1Xn(i). A

classical result in probability states that Tn
d→ T if and only if T = T̃ (1) for some

Lévy process T̃ , which in this case is a subordinator.

Definition 3.1. A Lévy process T̃ in R is a stochastic process with right-continuous
left-limits paths, stationary independent increments, and T̃ (0) = 0. A subordinator

T̃ is a Lévy process, with real, finite, non-negative increments.

Positive increments of an subordinator are called its jumps. Here is one way
to cook up a subordinator with infinitely many jumps but the sum of all jumps is
finite. Consider a measure Λ on (0,∞) such that

(8)

∫ ∞
0

(1 ∧ x)Λ(dx) <∞,

and

(9) Λ((0,∞)) =∞.
Let X be a Poisson point process on (0,∞) with intensity measure Λ. Equation
(8) tells us that this point process has a.s. finitely many points above 1, so it is
possible to list them in decreasing order. Let X↓ = (X↓(1), X↓(2), . . .) denote the
sequence of points of P in decreasing order. Equation (9) tells us that P has a.s.
infinitely many points, so X↓ is an infinite sequence.

Now let us list X↓ in exchangeable random order. Introduce an independent
sequence U(1), U(2), . . . of i.i.d uniform random variables on [0, 1]. ‘Order’ the pairs
(X↓(i), U(i)) in increasing U -coordinate, and let this be the list of (jump-size, jump-

time) description of our subordinator.1 That is, define the process T̃ : [0, 1]→ R≥0

by

(T̃ )(t) = d t+
∑
i

X(i)1{U(i)≤t}

for 0 ≤ t ≤ 1, and d ≥ 0 a fixed number called the drift coefficient. One can check
that T̃ is indeed a subordinator restricted to [0, 1]. Furthermore, all subordinators

satisfying T̃ (1) <∞ a.s. is of this form. The measure Λ is called the Lévy measure

of T̃ .
Finally, we need a classical result on convergence of i.i.d. positive triangular

arrays to subordinators (see [4, §15]).

1We can’t really speak of the smallest U(i) since there are infinitely many of them. However,

the expression for T̃ below still makes sense.



A SIZE-BIASED INTRODUCTION TO KINGMAN’S THEORY OF RANDOM PARTITIONS 7

Theorem 3.1. Let (X(n), n ≥ 1) be an i.i.d. positive triangular array, Tn =∑n
i=1Xn(i). Then Tn

d→ T for some random variable T , T <∞ a.s. if and only if

T = T̃ (1) for some subordinator T̃ whose Lévy measure Λ satisfies (8).

We would also want the following result on convergence of densities.

Theorem 3.2. Consider the setup of Theorem 3.1. Assume Tn
d→ T , T <∞ a.s.

Let µn be the measure of Xn(i). If µn,Λ have densities ρn, ρ, respectively, then we
have pointwise convergence for all x > 0

nρn(x)→ ρ(x).

Consider a subordinator with Lévy measure Λ, drift d = 0. Let T̃0 be the

subordinator at time 1. Assume Λ(1,∞) <∞, Λ(0,∞) =∞,
∫ 1

0
xΛ(dx) <∞, and

Λ(dx) = ρ(x) dx for some density ρ. Note that T̃0 < ∞ a.s, and it has a density

determined by ρ via its Laplace transform, which we denote ν. Let T̃k denote the
remaining sum after removing the first k terms of the size-biased permutation of
the sequence X↓ of ranked jumps.

Proposition 3.3 ([8]). The sequence (T̃0, T̃1, . . .) is a Markov chain with stationary
transition probabilities

P(T̃1 ∈ dt1|T̃0 = t) =
t− t1
t
· ρ(t− t1)

ν(t1)

ν(t)
dt1.

Proof. Note the similarity to (5). Starting with (4) and send n→∞, for any finite
k, we have νn−k → ν pointwise, and by Theorem 3.1, (n− k)ν1 → ρ pointwise over
R, since there is no drift term. Thus the analogue of (4) in the limit is

(10) P(T̃0 ∈ dt0, . . . , T̃k ∈ dtk) =

(
k−1∏
i=0

ti − ti+1

ti
ρ(ti − ti+1)

)
ν(tk) dt0 . . . dtk.

Rearranging gives the transition probability in Proposition 3.3. �

4. Random mass partition with independent stick-breaks. Stable
subordinators and Poisson-Dirichlet distributions.

The stick-breaking representation in (6) in the limit as n→∞ takes the form

(11)
X[k]

T̃0

= Wk

k−1∏
i=1

W i,

where X[k] is the kth size-biased pick from the jumps of the subordinator T̃ , and

Wi = X[i]

T̃i−1
, W i = 1−Wi = T̃i

T̃i−1
.

Let us for a moment forget about the subordinator and consider (11). As long
as the Wi’s are random, we have a random mass partition (P1, P2, . . .), with

(12) Pi = W1 · · ·Wi−1W i

for i = 1, 2, . . .. Let us look for ‘nice’ random partitions. Specifically, we want
the Wi’s are independent, and P given by (12) is the size-biased permutation of

some mass partition Q. But if P
d
= Q∗, then P ∗

d
= (Q∗)∗

d
= Q∗

d
= P . So this

is equivalent to saying that the distribution of P is invariant under size-biased
permutation. Pitman [9] proved a complete characterization.
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Theorem 4.1 ([9]). Let P ∈ ∆1, P1 < 1, and Pn = W1 · · ·Wn−1Wn for inde-
pendent Wi. Then P = P ∗ if and only if one of the four following conditions
holds.

(1) Pn ≥ 0 a.s. for all n, in which case the distribution of Wn is

beta(1− α, θ + nα)

for every n = 1, 2, . . ., for some 0 ≤ α < 1, θ > −α.
(2) For some integer constant m, Pn ≥ 0 a.s. for all 1 ≤ n ≤ m, and Pn = 0

a.s. otherwise. Then either
(a) For some α > 0, Wn has distribution beta(1 + α,mα − nα) for n =

1, . . . ,m;
or

(b) Wn = 1/(m− n+ 1) a.s., that is, Pn = 1/m a.s. for n = 1, . . . ,m;
or

(c) m = 2, and the distribution F on (0, 1) defined by F (dw) = w̄P(W1 ∈
dw)/E(W̄1) is symmetric about 1/2.

The Patil-Taillie case of Proposition 2.3 is case 2(a). Case 2(b) is the limit of
2(a) as α→∞. Case 2(c) is the special situation where the random mass partition
only has two parts.

In case (1), such a distribution P is known as the GEM(α, θ) distribution. The
abbreviation GEM was introduced by Ewens, which stands for Griffiths-Engen-
McCloskey. If P is GEM(α, θ), then P ↓ is called a Poisson-Dirichlet distribu-
tion with parameters (α, θ), denoted PD(α, θ) [8]. This is an important family of
ranked random mass partitions, with applications in fragmentation and coalescence,
Bayesian statistics, and machine learning. See [10] and references therein.

We now prove one direction of this theorem by deriving PD(α, θ) as ranked
jumps of a subordinator.

Definition 4.1. The subordinator T̃ with Lévy measure

Λ(dx) = θx−1e−cx, dx

for x > 0 is called a gamma subordinator with parameter (θ, c).

The parameter c > 0 is called the scaling parameter. Indeed, if T̃ a gamma sub-
ordinator with parameter (θ, 1), then c · T̃ is a gamma subordinator with parameter
(θ, c). Thus, the parameter c plays no role in the random mass partition defined
by a gamma subordinator.

Proposition 4.2 (PD(0, θ)). Let T̃ be a gamma(θ, c) subordinator. For X↓ its

sequence of ranked jumps, the random mass partition X↓/T̃ (1) has distribution
PD(0, θ).

Definition 4.2. A stable process is a real-valued Lévy process (Y (s), s ≥ 0) with
initial value Y (0) = 0 that has the self-similar property

Y (s)
d
= s1/αY (1)

for all s ≥ 0. The parameter α is the exponent of the process.

Stable processes are important in probability. A stable subordinator is a subor-
dinator that is also a stable process.
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Lemma 4.3. Consider a subordinator T̃ with Lévy measure Λ with density

(13) ρ(x) = cx−(1+α),

for some constant c > 0, x > 0. Then T̃ satisfies (8) if and only if α ∈ (0, 1).

Proof. Plug (13) in to (8) and integrate. �

Proposition 4.4 (PD(α, 0)). For α ∈ (0, 1), let T̃ be a stable(α) subordinator
with density (13). For X↓ its sequence of ranked jumps, the random mass partition

X↓/T̃ (1) has distribution PD(α, 0).

To obtain PD(α, θ), we will do a change of measure from PD(α, 0). First we
need a technical lemma.

Lemma 4.5. For α ∈ (0, 1), let T̃ be a stable(α) subordinator with density (13).

Then T̃ (1) > 0 a.s. and E(T̃ (1)−θ) <∞ for all θ > −α.

Proof. For θ > 0, start with the identity

x−θ =
1

Γ(θ)

∫ ∞
0

e−xttθ−1 dt.

Apply Fubini-Tonelli’s theorem for nonnegative functions

E(T̃ (1)−θ) =
1

Γ(θ)

∫ ∞
0

Ee−T̃ (1)ttθ−1 dt

Since T̃ is α-stable,

Ee−T̃ (1)t = e−ct
α

.

(One can also use the Lévy-Khitchine formula for subordinators). Plug in and
simplify, we get

E(T̃ (1)−θ) =
Γ(θ/α)

αcθ/αΓ(θ)
.

For θ < 0, express the Γ function as an integral, and use analytic continuity to
extend the above computation. Note that Γ(θ/α) <∞ for θ > −α. �

Proposition 4.6 (PD(α, θ)). For α ∈ (0, 1), let T̃ be a stable(α) subordinator
with density (13). Let X↓ be its sequence of ranked jumps. Let Pα denote the
distribution of X↓. For θ > −α, define the probability measure Pα,θ to be absolutely
continuous with respect to Pα and has density

Pα,θ =
T̃ (1)−θ

ET̃ (1)−θ
Pα.

Then under Pα,θ, the random mass partition X↓/T̃ (1) has distribution PD(α, θ).

Proof of Propositions 4.2, 4.4 and 4.6. From (10), for general ρ, the joint density

of T̃1 and W1 is

fW1,T̃1
(w1, t1) = fT̃0,T̃1

(t1w̄1
−1, t1) = w1ρ(

t1w1

w̄1
)t1w̄1

−1ν(t1),

where w̄1 = 1− w1.
For Propositions 4.2 and 4.4, plug in the corresponding formulas for ρ and sim-

plify. For instance, consider the α-stable subordinator of Proposition 4.4. Plug in
(13) for ρ gives

(14) fW1,T̃1
(w1, t1) = cw−α1 w̄1

α−1t−α1 ν(t1).
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Since c is a constant independent of w1 and t1, we conclude that W1 and T1 are
independent. In particular, W1 has beta(1 − α, α) distribution. Repeatedly apply
(10) as above show that theWi’s are independent and have the desired distributions.

For Proposition 4.6, note that T̃ (1) = T̃0 = t1w̄1
−1. So the density fW1,T̃1

(w1, t1)
under Pα,θ is

CfW1,T̃1
(w1, t1)(

t1
w̄1

)−θ

for some constant C depending on α and θ, and fW1,T̃1
(w1, t1) is given in (14).

Simplify to get

Ccw−α1 w̄1
α+θ−1t

−(α+θ)
1 ν(t1).

So under Pα,θ, W1 and T̃1 are independent, W1 has beta(1−α, α+ θ) distribution,

and T̃1 is distributed like T̃0 under Pα,θ+α. Recurse this computation gives the
desired result for the distribution of the Wi’s.

We have shown that the size-biased permutation of the jumps of the subordi-
nators defined in Propositions 4.2, 4.4 and 4.6 follow the GEM(0, θ), GEM(α, 0)
and GEM(α, θ) distributions, respectively. Thus, the ranked jumps follow the
Poisson-Dirichlet distributions with corresponding parameters. �

5. Exchangeable random partitions. Kingman’s correspondence.

5.1. Partition of [n]. Let n ∈ N ∪ {∞}. Define [n] = {1, 2, . . . , n}, with the
convention that [∞] = N. For a set A, let |A| denote its cardinality (number of
elements).

Definition 5.1. A partition πn of [n] into k blocks is an unordered collection of
non-empty disjoint sets {A1, . . . , Ak}, whose union is [n]. The set of unordered
block sizes {|A1|, . . . , |Ak|} is a partition of n, which we denote |πn|.

The canonical way to order a partition of [n] is by an increasing order on the
least element of each block. This is called order by appearance.

A partition of [n] induces a partition of [m] for all m ≤ n by restricting to the
first m elements.

Definition 5.2. A sequence (π[n], n ≥ 1) of partitions of [n] is called consistent or
compatible if the restriction of π[n] to [m] equals π[m] for all m ≤ n.

Lemma 5.1. A sequence (π[n], n ≥ 1) of partitions of [n] is consistent if and only
if π[n] equals the restriction of π to [n] for some partition π of N.

Proof. Suppose π is a partition of N. Then clearly its restrictions to [n] form a
consistent sequence. Conversely, suppose we have a consistent sequence. Label the
blocks by order of appearance. Let π[n](i) be the block of π[n] containing in i. For
each fixed i ∈ N, (π[n](i), n ≥ 1) is a non-decreasing sequence of sets. Define

π(i) =
⋃
n∈N

π[n](i).

Then (π(i), i ∈ N) is a partition of N, call it π. Clearly π restricted to [n] equals
π[n]. �
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5.2. Exchangeable partitions. In many applications we want to forget about the
labels of the individual elements of [n], treating them as ‘exchangeable’ objects. Ef-
fectively we want to forget about the partition of [n], and concentrate on partitions
of n.

A permutation is a bijection σ : [n] → [n]. For n = ∞, a permutation of N is
a bijection σ : N → N that leaves all but finitely many elements of N fixed. The
group of permutations of [n] naturally acts on a partition of [n] by permuting the
labels of the elements. That is,

σ · {A1, . . . , Ak} = {σ ·A1, . . . , σ ·Ak},

where if A1 = {i, j, k, . . .}, then

σ ·A1 = {σ(i), σ(j), σ(k), . . .}.

Example 5.1. Example: order by appearance, action of symmetric group. Ex-
changeable. Size-biased permutation, sampling without replacement and order by
appearance.

Definition 5.3 (Exchangeable random partitions). Let n ∈ N ∪ {∞}. A random

partition Π of [n] is called exchangeable if for every permutation σ of [n], σ ·Π d
= Π.

It follows from this definition that a random partition Π of N is exchangeable if
and only if its restrictions to [n] are exchangeable for all n ∈ N.

Example 5.2 (Random partitions from Kingman’s paintbox). Fix p = (p1, p2 . . .) ∈
∆. Represent it as an interval partition of [0, 1], viewed as paint buckets. Use King-
man’s paintbox to color balls numbered i = 1, 2, . . .. Say that i ∼ j if i and j have
the same color. This defines a random partition Π of [∞]. Call this the paintbox
based on p.

Lemma 5.2. Fix p = (p1, p2 . . .) ∈ ∆. The paintbox based on p is an exchangeable
random partition.

Proof. Let (Ui, i ≥ 1) be the sequence of i.i.d uniform random variables used to
construct the paint boxes. By definition, σ · Π has the same distribution as the
paintbox constructed with the sequence (Uσi , i ≥ 1). But the Ui’s are i.i.d, so

(Uσi , i ≥ 1)
d
= (Ui, i ≥ 1). Thus, σ ·Π d

= Π. So Π is exchangeable. �

Example 5.3 (Finite paintbox). For k ∈ N, let π = (n1, . . . , nk) be a partition
of n into k parts. Represent them as k disjoint intervals, each containg n1, . . . , nk
integer points on [1, n]. Use a discrete version of Kingman’s paintbox to paint n
balls as follows: for each i ∈ [n], pick an integer on [1, n] uniformly at random out
of the remaining integers, and color it according to the interval that it falls on.
Then remove this integer from [1, n]. This gives a random partition Πn of [n]. Call
this the finite paintbox based on π.

Lemma 5.3. Fix π = (n1, . . . , nk). The finite paintbox based on π is exchangeable.

The following says that exchangeable finite partitions arise as mixture of finite
paintboxes. It setups a bijection between exchangeable finite partitions and random
mass partitions supported on indivisible units. It is a finite version of the Kingman’s
correspondence.
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Proposition 5.4 (Finite Kingman’s Correspondence). Let Πn be an exchangeable
partition of [n]. Then the distribution of Πn is a mixture of finite paintboxes. That
is, let π↓n be the corresponding partition of n arranged in decreasing block sizes.
Then the distribution of Πn conditioned on π↓n = π equals the distribution of the
finite paintbox based on π.

Proof. Exercise �

Theorem 5.5 (Kingman’s correspondence). Let Π be an exchangeable random
partition of N. Then the law of Π is a mixture of paintboxes. That is,

P(Π ∈ ·) =

∫
∆

P(|Π|↓ ∈ dp)ρp(·),

where ρp stands for the law of the paintbox based on p.

Proof. For a given partition π of N, let bπ : N → N be the least element selector,
where bπ(i) is the smallest element of the block that contains i. Let U1, . . . be a
sequence of i.i.d uniform, independent of Π. Conditioned on values of Π, define

X(i) = UbΠ(i).

Note that X defines Π a.s. via i ∼ j iff X(i) = X(j).
We claim that X = (X(1), . . .) is exchangeable. Indeed, for a permutation σ of

N,

σ(X)(i) = X(σi) = UbΠ(σi) = U ′bσ(Π)(i)
,

where U ′j = UbΠ(i). Since Π
d
= σ(Π) and independent of U , and Ui’s are i.i.d., we

conclude that

σ(X) = (X(σ1), . . .)
d
= X = (X(1), . . .).

So X is exchangeable.
By de Finetti’s theorem, there exists some random probability measure µ on

[0, 1] such that X(i)’s are i.i.d conditioned on µ. Now, conditioned on µ, let F be
its distribution function. Introduce an independent sequence V1, . . . of i.i.d uniform

random variables on [0, 1]. Then conditioned on µ, (F−1(V1), . . .)
d
= X. Recover Π

a.s. from X. Then i and j belongs to the same block of Π if and only if Vi and
Vj belong to the same interval in the domain of F−1. So conditioned on µ, Π is
distributed as a paintbox based on the intervals in the domain of F−1. So Π is a
mixture of paintboxes (with mixture law µ) as required. �

Let us now consider some consequences of Kingman’s correspondence.

Definition 5.4. Let (πn) be a sequence of partitions. Write πn as (Nn,1, Nn,2, . . .)
in the order of least element. For each i = 1, 2, . . ., the limit

lim
n→∞

Nn,i
n

,

if it exists, is called the asymptotic frequency of block i. If all blocks of (πn) have
asymptotic frequency, say that (πn) has asymptotic frequencies.

Fix p ∈ ∆. Suppose
∑
i p(i) = 1. Let Π be a paintbox based on p, Πn be its

restriction on [n]. Write Πn as (Nn,1, Nn,2, . . .) in the order of least element and as
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(N↓n,1, N
↓
n,2, . . .) in the order of decreasing block sizes. Then as n → ∞, by law of

large numbers, for each i,

(15) lim
n→∞

N↓n,i
n
→ p↓(i)

and

(16) lim
n→∞

Nn,i
n

a.s.→ P ∗(i),

where P ∗ is the size-biased permutation of p. If
∑
i p(i) < 1, then we still have

(15). For each i, either (16) holds, or

lim
n→∞

Nn,i
n

a.s.→ 0.

The later case occurs if and only if Π(i) is a singleton. The set of singletons
Π(0) := {i ∈ N : Π(i) = {i}} is a random set with mass p(0) := 1−

∑
i p(i).

That is, paintboxes (and hence mixture of paintboxes) have asymptotic frequen-
cies. So by Kingman’s theorem,

Corollary 5.6. All exchangeable random partitions of N have asymptotic frequen-
cies.

5.3. EPPF.

Lemma 5.7. Let n ∈ N. A random partition Πn of [n] is exchangeable if and only
if

P(Πn = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|)
for some probability mass function p taking values on finite (but not fixed) partitions
of n, and p is symmetric in its argument.

The function p of Lemma 5.7 is called the exchangeable partition probability
function (EPPF) of Πn. Since p is symmetric, it is customary to list its arguments
in decreasing sizes. Let Cn denote the set of partitions of n ordered in decreasing
sizes (these are called compositions of n). So p maps Cn to [0, 1].

Since Πn is exchangeable, it induces a sequence of consistent exchangeable ran-
dom partitions by restrictions to m < n. Thus, one can regard p as a map from⋃n
m=1 Cm → [0, 1]. Consistency implies that p satisfies the following addition rule:

For each composition (n1, . . . , nk) of m ¡ n,

(17) p(n1, . . . , nk) = p(n1, . . . , nk, 1) +

k∑
j=1

p(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk).

In addition,

(18) p(1) = 1.

Conversely, if p :
⋃n
m=1 Cm → [0, 1] satisfies (17) and (18), then by Lemma 5.7,

it is an EPPF of some exchangeable partition Πn of [n].

Definition 5.5 (Infinite EPPF). An infinite EPPF is a function p :
⋃∞
m=1 Cm →

[0, 1] that satisfies (17) and (18).

By Lemma 5.7 and definition of infinite exchangeable partitions, each infinite
EPPF specifies the law of an exchangeable partition Π of N.
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5.4. Kingman’s correspondence in terms of EPPF. Our goal is to cast King-
man’s result in terms of the EPPF. This leads us to Theorem 5.8 of Pitman.

Fix p ∈ ∆. Consider the paintbox Π based on p. What is its EPPF p? The
answer is given by the Chinese Restaurant Process, introduced by Dubins and
Pitman and later generalized by Pitman [10, §3].

Definition 5.6 (Partially Exchangeable Chinese Restaurant Process). Start with
an initially empty restaurant with an unlimited number of tables numbered 1, 2, . . .,
each capable of seating an unlimited number of customers. Customers numbered
1, 2, . . . arrive one by one and choose their seats according to the following rules.

(1) Customer 1 sits at table 1
(2) Given that the first n customers have sat at k tables, the (n+1)-st customer

will:
• Join table i with probability p(i)

• Join a new table with probability 1−
∑k
j=1 P (j).

Identify the seating configuration of n customers with a partition of [n], where
i ∼ j if and only if customers i and j sit at the same table. This process defines
a consistent sequence (Πn) of partitions of n with asymptotic block frequencies p.
For blocks Ai listed in order of appearance, the law of Πn is specified by

(19) P(Πn = {A1, . . . , Ak}) = p(n1, . . . , nk) =

k∏
i=1

p(i)ni−1
k−1∏
i=1

1−
i∑

j=1

p(j)

 ,

where ni = |Ai|. For general p ∈ ∆, p defined in (19) is not symmetric in its
argument. Thus, (Πn) in general is not exchangeable.

Now let P be a random mass partition on ∆. Condition on the value of P , draw
a random partition (Πn) of [n] by the Chinese Restaurant Process above. This
gives a consistent sequence of partitions (Πn), with asymptotic block frequencies
P , and law
(20)

P(Πn = {A1, . . . , Ak}) = p(n1, . . . , nk) = E

 k∏
i=1

P (i)ni−1
k−1∏
i=1

1−
i∑

j=1

P (j)

 .
The key theorem of this section states that this sequence (Πn) is exchangeable

if and only if p in (20) is symmetric in its argument. Roughly, this says that ex-
changeable partitions of N are in bijection with ‘exchangeable mixtures’ of Chinese
Restaurants.

Theorem 5.8 (Pitman EPPF theorem). Let P be a random mass partition on ∆.
Define p :

⋃∞
m=1 Cm → [0, 1]

(21) p(n1, . . . , nk) = E

 k∏
i=1

P (i)ni−1
k−1∏
i=1

1−
i∑

j=1

P (j)

 .
There exists an exchangeable partition Π∞ of N whose asymptotic block frequencies
in order of appearance P̃ has the same distribution as P if and only if p is a
symmetric function in its arguments. In this case, the EPPF of Π∞ is p defined
for P (i) = P̃ (i).
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5.5. EPPF for independent stick-break family. Let P be a random mass par-
tition on ∆ invariant under size-biased permutation, such that its stick-breaking
representation (12) consists of independent Wi’s. For each fixed k, by Theorem 5.8,
one can compute the EPPF p using (21) and condition on P (k), take the expec-
tation, condition on P (k − 1), take the expectation, and so on. The independence
property simplifies the formula.

Recall from Theorem ?? that there are only a few families satisfying the inde-
pendent stick-break criterion. The more interesting one is the GEM(α, θ) family.
The EPPF for P ∼ GEM(α, θ) is the Pitman sampling formula

(22) pα,θ(n1, . . . , nk) =
(θ + α)k−1↑α

(θ + 1)n−1↑1

k∏
i=1

(1− α)ni−1↑1,

where for integer m and real numbers x,a,

(x)m↑a =

m−1∏
i=0

(x+ ia).

For example, for α = 0, θ > 0, this is the Ewens sampling formula

(23) p0,θ(n1, . . . , nk) =
θk

θ(θ + 1) · · · (θ + n− 1)

k∏
i=1

(ni − 1)!.

The seating plan for the Chinese Restaurant Process has the following simple
description [11].

• Customer 1 sits at table 1.
• Given that n customers have sat at k tables, with ni customers at table i,

customer (n+ 1) will
– Sit at table i with probability ni−α

n+θ

– Sit at a new table with probability θ+kα
n+θ .

6. Various applications of the GEM process

The Chinese Restaurant description of the GEM process gives a simple way to
check if some random partition is GEM. We give some examples.

6.1. A branching process description of the GEM distribution. There is
an interesting interpretation of the GEM(α, θ) distribution in terms of a branching
process in continuous time. In other lecture notes in this school we have seen
Galton-Watson process, which is a branching process in discrete time.

In our case, we have a branching process in continuous time. Let Z(t) be the
population at time t. Each individual lives for a random time. Each individual has
an independent exponential clock. When the clock rings, she produces a random
number of offsprings.

Definition 6.1 (GEM(α, θ) branching). Fix α ∈ [0, 1], θ > 0. Our population has
two types, novel and clone. Each individual has a color, and has infinite lifetime.
The reproduction rates are:

• A novel produces a novel at rate α, and independently produces a clone at
rate 1− α.
• A clone produces a clone at rate 1.
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Furthermore, novels migrate at rate θ, independent of the reproduction. The pop-
ulation starts with one novel at time t = 0. The coloring rules are:

• Each novel has a new unique color.
• Each clone has the same color as its parent.

Number the individuals 1, 2, . . . in their order of appearance in the population.
Let Π be the random partition of N generated by their colors, that is, i ∼ j if and
only if i and j have the same color.

Proposition 6.1. The random partition Π of N from the branching process in
Defintion 6.1 is a GEM(α, θ).

Proof. The induced partition on [n], Πn, evolves according to a (α, θ) Chinese
Restaurant Process. This uniquely determines the law of Π. We are done. �

With this description, one can use standard results from branching processes to
derive properties of the GEM(α, θ) process. For example,

Lemma 6.2. Let Π be a GEM(α, 0) partition, Πn be its restriction to [n]. Let Kn

be the number of components of Pin. Then limn→∞
Kn
nα exists a.s.. Denote this

limit by S. Then the distribution of S is specified by the identity

W ∗ = SWα,

where W is an exponential(1) independent of S, and W ∗
d
= exponential(1).

Proof. Let Nt be the number of individuals at time t, N∗t be the number of novel
individuals at time t. let Tn be the first time where the n-th individual is born.
Then

Nα(Tn)

eαTn
Kn

nα
=
N∗(Tn)

eαTn
.

Note that Kn is independent of Tn, hence Nα(Tn)
eαTn

= n
eαTn

is independent of Kn
nα .

Now, (N∗t , t ≥ 0) is a Yule process with rate α, that is, a pure birth process with
transition rate iα from state i to state i+ 1. And (Nt, t ≥ 0) is a Yule process with
rate 1. By known results for Yule processes,

Nt
et

a.s.→ W,

and
N∗t
eαt

a.s.→ W ∗,

where W and W ∗ are exponentially distributed with mean 1. Since Tn → ∞ a.s.
as n→∞, we have

Nα(Tn)

eαTn
a.s.→ Wα,

and
N∗(Tn)

eαTn
a.s.→ W.

So Kn
nα → S independent of W , as needed. �

By computing moments, one finds that

ESp =
Γ(p+ 1)

Γ(pα+ 1)
.

In other words, S has the Mittag-Leffler distribution with parameter α.



A SIZE-BIASED INTRODUCTION TO KINGMAN’S THEORY OF RANDOM PARTITIONS 17

Proposition 6.1 also reveals an interesting coupling between GEM(0, θ) and
GEM(α, θ) distribution for θ ≥ 0. If we ignore distinction between clone and
novel, then this is just a birth process with rate 1, immigration at rate θ. So it is a
GEM(0, θ) distribution, with i ∼ j if and only if i and j share a common ancestor.
Conditioned on this partition, then the GEM(α, θ) is a refinement, where each
family is broken up by coloring rules according to a GEM(α, 0).

Proposition 6.3. Let α ∈ [0, 1], θ ≥ 0. Break a stick of length 1 according to the
GEM(0, θ) distribution. Then, break each of these stick further independently at
random, according to the GEM(α, 0) distribution. let Q be a size-biased random
permutation of the lengths in this array. Then Q has the GEM(α, θ) distribution.

6.2. Kingman coalescent with mutation. As an application of our theory so
far, we derive some properties of Kingman coalescent.

Proposition 6.4. Let T be the line of descent tree from Kingman’s coalescent on
[n]. On each branch of the tree, introduce an independent Poisson point process
with rate θ/2 per unit length of marks, called mutations. Say that i ∼ j if and only
if the unique path in T connecting i and j does not have mutations. This defines a
random partition Πn. Show that Πn is a GEM(0, θ).

Proof. We will use a coupling with the CRP for GEM(0, θ). Condition on Πn−1

and the tree Tn−1, consider element n. By Kingman’s coalescent, for each i =
1, . . . , n − 1, there is an independent exponential clock for the pair (i, n), and the
first clock that rings is the point on the tree Tn−1 that n will join. Let S be the
time that the first clock rings. Note that S ∼ exponential(n−1). For a some table
j, the event that {njoins tablej} is the event that

Clock (n, i) is min for some i in table j AND there is no mutation on [0, 2S] for
an independent PPP (θ/2) .

Note that these two events are independent. The probability of the first event is
nj/(n−1). The probability of the second event is the probability that exponential(θ) >
exponential(n − 1) for two independent exponentials. This happens with proba-
bility n−1

n−1+θ . Thus, the probability of n joining table j is
nj

n−1+θ . This gives the

coupling required to the CRP for GEM(0, θ). �

6.3. Random permutations. Let σn be a random permutation of [n]. Write σn
as a product of cycles. This defines a random partition of [n], call it Πn. There is
an abundance of connections between random permutations and the GEM family.
Here are some basic results.

Proposition 6.5. Let (σn, n ≥ 1) be a sequence of random permutations of [n]
with the following properties

• σn is a uniform random permutation of [n]
• Conditioned on σn, σn+1 is distributed as σn with the element n+1 inserted

in one of its cycles.

Let Πn be the corresponding sequence of random partitions of [n]. Then Πn is
distributed as the restriction to [n] of a GEM(0, 1).

Corollary 6.6. Let Kn be the number of cycles in a uniform random permutation
of [n]. Then

Kn =

n∑
i=1

Bernoulli(
1

i
)



18 NGOC M TRAN

for independent Bernoulli’s. In particular,

lim
n→∞

Kn − log n√
log n

d→ N(0, 1),

where N(0, 1) is the standard Gaussian.
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7. Exercises

Exercise 7.1 (Size-biased pick). Let Xn = (Xn(1), . . . , Xn(n)) be i.i.d with dis-
tribution F supported on [0,∞), mean µ < ∞. Let Xn[1] be the first size-biased
pick from Xn. Show that as n→∞,

lim
n→∞

P(Xn[1] ∈ dx) =
xF (dx)

µ
.

This distribution is called the size-biased distribution of F .

Exercise 7.2. Let F be a distribution supported on [0,∞) with mean µ <∞. Let

G be its size-biased distribution, that is, G(dx) = xF (dx)
µ . Give an example where

G does not determine F .

Exercise 7.3 (Open problem, CSP 2.3.5). Let P be a random mass partition, P ∗(1)
be the first size-biased pick from P . Call the distribution of P ∗(1) the structural
distribution of P . What is a necessary and sufficient condition for a distribution F
on (0, 1] to be a structural distribution?

Exercise 7.4 (Open problem, CSP 3.7). Suppose that P is a random mass parti-

tion, P = P ∗. Suppose that P (1) is independent of the sequence ( P (i)
1−P (1) , i ≥ 2).

Does this necessary imply that P is a GEM(α, θ)?

Exercise 7.5. Kingman’s paintbox gives one method to extend size-biased permu-
tation from proper mass partitions (ie: mass partitions p ∈ ∆ such that

∑
i p(i) = 1)

to include improper mass partitions (ie: mass partitions p ∈ ∆ such that
∑
i p(i) <

1). Consider the following naive extension of size-biased permutation: for p ∈ ∆,
perform Kingman’s paintbox but do not write down a zero whenever the sample
point falls outside of the paint buckets. Denote the resulting random permutation
of p by P̂ . Let P ∗ denote the usual (Kingman’s) size-biased permutation of p.

Construct a sequence (pn) ∈ ∆ such that pn approaches p ∈ ∆ component-wise,

but P̂n does not converge in distribution to P̂ .

Exercise 7.6. Prove Proposition 5.4.

Exercise 7.7. Give an example of a sequence of consistent partitions (πn) of [n]
that does not have asymptotic frequencies.

Exercise 7.8 (Chinese Restaurant and Polya’s urn). Consider the Polya’s urn
process: start with w white balls and b black balls. At each step, remove a random
ball from the urn and replace with two balls of the same color. Repeat this process
n times, thus adding in total n balls to the urn. Let Wn denote the number of
white balls newly added.

(1) Let Xi be the indicator that the i-th ball is black. Show that the Xi’s are
exchangeable.

(2) Show that for x ∈ {0, 1, . . . , n},

P(Wn = x) =

(
n

x

)
(w + x− 1)!(b+ n− x− 1)!(w + b− 1)!

(w − 1)!(b− 1)!(w + b+ n− 1)!

(3) Show that limn→∞Wn/n has the beta(w, b) distribution.
(4) Let P be a random mass partition such that P (i) has the stick-breaking

form (12) for Wi i.i.d beta(a, b). Let p be defined as (20). Give a Chinese
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Restaurant construction for p using Polya’s urn scheme. (Note that unless
a = 1, this partition is not exchangeable).

Exercise 7.9. Let Xi be the indicator of the event that i is the least element of
some block of an exchangeable random partition Πn of [n]. Show that the joint law
(Xi, 1 ≤ i ≤ n) determines the law of Πn.

Exercise 7.10. Show that the Xi’s of the previous exercise are independent if and
only if Πn is the partition obtained by running the Chinese Restaurant Process
with parameters (0, θ), for θ ∈ [0,∞], with obvious definitions for the limiting cases
by continuity.

Exercise 7.11 (Open problem, CSP 2.1.5). Let P be a distribution on binary
strings of length n. Give necessary and sufficient conditions for P to be the law of
block indicators of an exchangeable random partition as defined Problem 7.9.

Exercise 7.12 (Open problem, based on [3]). Fix For α ∈ [0, 1), θ > −α. Let
Fragα : ∆↓ → ∆↓ be a random operator as follows: for a p ∈ ∆↓, let p∗(1) be
a size-biased pick from p. Let η = (η1, η2, . . .) ∼ PD(α, 1 − α) be independent
from p∗(1). Replace p∗(1) in p by the sequence p∗(1) · η, and return the resulting
vector in decreasing order as Fragα(p). In other words, this operator fragments a
size-biased mass into smaller masses.

Now define the random operator Coagα,θ : ∆↓ → ∆↓ as follows. For p ∈ ∆↓,

pick a B ∼ Beta( 1−α
α , θ+αα ). If α = 0, choose B = 1

θ+1 . Conditoned on B, select

each p(i) with probability B independently at random. Remove the selected blocks
and replace it with their sum, and return the resulting vector in decreasing order as
Coagα,θ(p). In other words, this operator coagulates a random fraction of masses
into one.

Dong, Goldschmidt and Martin [3] showed that Fragα and Coagα are inverses
of each other, in the following sense.

Theorem 7.1. Suppose X,Y are random ordered mass partitions. Then Y ∼
Fragα(X) for X ∼ PD(α, θ) if and only if X ∼ Coagα,θ(Y ) for Y ∼ PD(α, θ+1).

They gave a branching process interpretation of Fragα as follows. Consider the
GEM(α, θ) branching process. Assume further that

• When a parent is killed, each child (first generation clone) becomes a novel
and has a unique color different from all others in the population.
• Each clone actually generates novel individuals at rate α and independently

generates clones at rate 1− α, but this difference (in type as well as color)
among its offspring is invisible until the clone becomes a novel due to its
parents being killed.

Now kill the first individual, then the second, then the third, and so on. Starting
with a GEM(α, θ) population, it is clear that this process of killing is the Fragα
operator above.

(1) Is there a natural branching process description for the coagulation opera-
tor?

(2) Run the branching process with fragmentation and coagulation start with
time t > 0. (Instead of waiting to obtain a GEM(α, θ) population first
before introducing killing or merging). What are the possible equilibria?
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8. Supplementary materials

8.1. Poisson point processes. Let E be a Polish space, Λ a sigma-finite measure
on E. For a random measure M on E, Borel measureable set E, let M(B) denotes
its measure.

Definition 8.1. Say that M is a Poisson point process with intensity measure Λ
(or Poisson measure with intensity Λ) if for every collection of k disjoint Borel
measurable sets B1, . . . , Bk with Λ(Bi) <∞,

P(M(Bi) = ni, i = 1, . . . , k) =

k∏
i=1

[Λ(Bi)]
ni

ni!
e−Λ(Bi).

A Poisson point process M is a sum of Dirac point masses

M =
∑
i∈I

δai .

The random points ai ∈ E are called atoms of M. If Λ(E) =∞, then one can take
I = N. If Λ(E) <∞, then I is a finite set a.s.

The key property is the independence property: that for disjoint sets Bi with
Λ(Bi) < ∞, M(Bi) are independent. The Poisson distribution follows from this
property after eliminating trivial cases.

8.2. de Finetti’s theorem. Say that the sequence of random variables X =
(X1, X2, . . .) is exchangeable if the distribution of X is invariant under permu-
tations of a finite subset of its terms.

Define the exchangeable sigma-algebra E , generated by all events unchanged
under permutations of a finite subset of the sequence X.

Theorem 8.1 (de Finetti’s theorem). Suppose X1, X2, . . . are exchangeable. Con-
ditioned on E, X1, X2, . . . are i.i.d.

Proof. See Durrett, theorem 4.6.5. �
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