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(Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig) 



Sensors 

4 



Sensors 
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Trillion Sensor World 
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AI and Pattern Recognition 
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(Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig) 



Pattern Recognition 
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Why Pattern Recognition is Hard 
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 Text detection 

 

 

 

 Character recognition 

PLAYA CERRADA 

RECENTE ATAQUE DE TIBURON 

 

 Language translation 

BEACH CLOSED 

RECENT ATTACK OF SHARK 



Why Pattern Recognition is Hard 

10 

(213,198,170,174,88,97,… 



Why Pattern Recognition is Hard 
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PR: Definition 
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‘5’ 
object label Pattern Recognition 



Pattern Recognition 
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‘5’ 
object label Pattern Recognition 



Feature Extraction 
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classification 

Feature 

Extraction 



Feature vs. Attribute 

(Đặc trưng và thuộc tính) 
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 Attribute 

 Characteristic 

 Quality of a thing 

 Example: weight (kg), volume (cm3), color (R,G,B)… 

 

 Feature 

 “Informative” measurement or characteristics. e.g. improving 

generalization/prediction performance. 

 Example: Density (kg/m3) 

 



Feature Extraction: ICR 
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Object Vector 



Feature Extraction: Color Image 
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Object Vector 



Feature Extraction: Radio Wave 
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Object Vector 



Feature Extraction: Features 
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 Informative 

 Help improving performance 

 Non-redundant 

 Removed without performance degradation 

 Explainable 

 Understandable by human 

 … 

“Coming up with features is difficult, time-consuming, 

requires expert knowledge.” (Andrew Ng, Machine Learning and AI 

via Brain simulations) 

https://en.wikipedia.org/wiki/Andrew_Ng
https://forum.stanford.edu/events/2011/2011slides/plenary/2011plenaryNg.pdf
https://forum.stanford.edu/events/2011/2011slides/plenary/2011plenaryNg.pdf


Feature: Engineering vs. Learning 

Feature Engineering Feature Learning 
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 Using domain knowledge to 

create features that make 

machine learning algorithms 

work. 

 Automatically create 

features that make machine 

learning algorithms work. 

Extraction 

Selection 

Creation 

Validation 

Extraction 

Selection 

Creation 

Validation 



Feature: Engineering vs. Learning 
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(Yann LeCun, 2010) 



Handwritten Digit Recognition: LeNet-5 
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k-NN 1-layer 

NN 

2-layer 

NN 

SVM LeNet-4 LeNet-5 

5.0 12.0 4.7 1.4 1.1 0.95 

MNIST Error Rates 

=6 =16 



Convolution Process 
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Convolution Operator 
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Edge Detection Filter / Kernel 
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LeNet-5, AlexNet 
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LeNet-5, VGGNet 
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LeNet-5: “Handcrafted” Convolution 
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=6 =16 

S1 

C2 



“Normal” Convolution 
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LeNet-5:  

“Handcrafted” vs. “Normal” Convolution 
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1,516  
parameters 

? 
parameters 



LeNet-5:  

“Handcrafted” vs. “Normal” Convolution 
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1,516  
parameters 

5x5x6x16+ 
(2.400+) parameters 



LeNet-5, GoogLeNet 
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Convolution, Reception 
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Reception,  

Reception with Dimension Reduction 
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#Layers vs. Performance 
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MNIST Revisited 
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k-NN 2-layer 

NN 

SVM 

RAW 

LeNet-5 MCDNN SVM 

HOG 

5.0 4.7 1.4 0.95 0.23 0.61 



Gradient Feature 
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 Filter mask 

 

 

 

 Feature 

 

 

 



Gradient Feature: [gx,gy] 
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gx 

gy 



Gradient Feature: Magnitude and Angle 
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gx 

gy 



Gradient Feature: Discrete Direction 

40 

bin 

8 

0 



Discrete Direction: (Sum) Sampling 
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Discrete Direction: Concatenation 
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4x4x8 dimensions 



MNIST Test Error Rate 

43 

k-NN 2-layer 

NN 

SVM 

RAW 

LeNet-5 Mul.Col.

DNN 

SVM 

HOG 

5.0 4.7 1.4 0.95 0.23 0.61 



HOG vs. LeNet-5 
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CNN Convolution vs. Filter 
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Filter Convolution 



CNN Convolution vs. Filter 
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Shallow, handcrafted Deep, trainable 



Stride and Padding 

47 

28x28 



Pooling/Sampling 
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Objective: 

- Improve space-invariance 

- Reduce parameters 

- More abstract features 

 

Methods: 

- Max pooling 

- Sum/Mean pooling 



Non-linear Transform of Features 
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Convolution Activation function 



Nonlinearity: HOG vs. CNN 
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HOG: Linear Transform of Pixels 
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x – Input image 

gf – Oriented edge filter 

b – Blur operator 

D – Sparse selection matrix for pooling/histogram 

(Hilton Bristow and Simon Lucey,  

  Why do linear SVMs trained on HOG features perform so well?, 2014) 



Nonlinearity 
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Why Deep? 
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Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional 

Networks, 2014 



PR: Feat Engineering vs. Feat. Learning 
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A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between 

HOG and CNN features for embedded vision," 2017. 



“Deep” Feature Learning vs.  

“Shallow” Feature Engineering 
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A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between 

HOG and CNN features for embedded vision," 2017. 

“Shallow”  

“Deep”  



Performance:  

Feat. Learning vs. Feat. Engineering 
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A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between 

HOG and CNN features for embedded vision," 2017. 



“Hand-Crafted” Feature Extraction 

Domain Specific Feature Designed Architecture 

57 



Architecture Design: Speed 
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 Simplification 

 

 

 

 

 Parallelization 

 

 

 

 

 

 Hand-design sub-network 



Architecture Design: Accuracy 
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 Multicolumn CNN for MNIST 

 10, 12, 14, 16, 18, 20 sizes 

normalization 

 5 DNN columns per 

normalization, total of 35 

columns  

 1x29x29-20C4-MP2-40C5-MP3-

150N-10N DNNs are trained 

 Performance 

k-NN 2-layer 

NN 

SVM 

RAW 

LeNet-5 Mul.Col.

DNN 

SVM 

HOG 

5.0 4.7 1.4 0.95 0.23 0.61 



Multi-column Deep CNN for MNIST 

60 

Dan Cireşan, Ueli Meier, Juergen Schmidhuber, Multi-column Deep Neural Networks for Image Classification, 2012 



What Next? 
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AI 

Trillion Sensor World 

How to 
Feature 

Learning 

AND/OR 

Engineering 



Why Pattern Recognition is Hard 
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 Text detection 

 

 

 

 Character recognition 

PLAYA CERRADA 

RECENTE ATAQUE DE TIBURON 

 

 Language translation 

BEACH CLOSED 

RECENT ATTACK OF SHARK 



Why Pattern Recognition is Hard 
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Why Pattern Recognition is Hard 
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Why Pattern Recognition is Hard 
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Tesseract OCR 
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Tesseract Word Recognition 
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Character Over-segmentation 
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Segmentation Graph 
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OCR With (Lexical) Context 
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context (LM) weight 

length penalty 



OCR With Long-Short Term Memory 
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Recurrent Neuron Networks 
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Long-Short Term Memory 

73 



LSTM vs. Language Model? 

74 



75 

“There is no one model that works best 

for every problem” 



Reference 

76 

 Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning 
Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-
2324, November 1998. 

 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with 
Deep Convolutional Neural Networks,” in NIPS, 2012. 

 A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap 
between HOG and CNN features for embedded vision," 2017 IEEE 
International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, 
pp. 1-4. 

 D. Ciregan, U. Meier and J. Schmidhuber, "Multi-column deep neural 
networks for image classification," 2012 IEEE Conference on Computer Vision 
and Pattern Recognition, Providence, RI, 2012, pp. 3642-3649. 

 https://www.learnopencv.com/histogram-of-oriented-gradients/ 

 https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks 

 A Beginner's Guide To Understanding Convolutional Neural Networks 

 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

 … 

https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

