Pattern Recognition: Feature Engineering and (Deep) Feature Learning

DungDuc NGUYEN, Ph.D. Institute of Information Technology, VAST

WORD LENS

See the world in your language.

Word Lens translates printed words from one language to another with your smartphone's video camera, in real time. No network connection needed!

Bloomberg

WIRED Eh

The New Hork Times

TechCrunch

English

(Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig)

Sensors

D

Sensors

1 GPS receiver

2

3

0

Matches position with customised version of Google's road maps

2 Laser

range finder:

Rotating sensor scans 180m distance through 360° to generate 3D map of surroundings _

Windscreen: Flexible . plastic designed to reduce injuries

Front: Foam-like __ material minimises impact in case of crash

Car would be summoned with smartphone application

Radar.

3 Video camera Identifies other road users, lane markers and traffic signals

4

4 Radars:

Located at front and rear, detect proximity of obstacles

Speed: Limited to 40km/h to help ensure safety Engine: 160km-range electric motor – equivalent to one used by Fiat's 500e

> Inertial motion sensors determine velocity and direction

> > Source and Picture: Google

Trillion Sensor World

AI and Pattern Recognition

(Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig)

Pattern Recognition

Why Pattern Recognition is Hard

Text detection

Character recognition

PLAYA CERRADA RECENTE ATAQUE DE TIBURON

Language translation

BEACH CLOSED RECENT ATTACK OF SHARK

Why Pattern Recognition is Hard

Why Pattern Recognition is Hard

PR: Definition

Pattern Recognition

Feature Extraction

Feature vs. Attribute

(Đặc trưng và thuộc tính)

Attribute

- Characteristic
- Quality of a thing
- Example: weight (kg), volume (cm³), color (R,G,B)...

Feature

- "Informative" measurement or characteristics. e.g. improving generalization/prediction performance.
- Example: Density (kg/m³)

Feature Extraction: ICR

Object Vector 11 = 2V = 3 H = 2 -L = 3-R = 2 B = 3 Crossings Distances 206 FIG. 2 304 (X_p, Y_p) 302 <303 θ [√]L_p €√310 308 FIG. 3

Feature Extraction: Color Image

Keypoint descriptor

Feature Extraction: Radio Wave

Feature Extraction: Features

"Coming up with features is difficult, time-consuming, requires expert knowledge." (Andrew Ng, Machine Learning and Al via Brain simulations)

Informative

Help improving performance

Non-redundant

Removed without performance degradation

Explainable

Understandable by human

Feature: Engineering vs. Learning

Feature Engineering

Using domain knowledge to create features that make machine learning algorithms work.

Feature Learning

 Automatically create features that make machine learning algorithms work.

Feature: Engineering vs. Learning

(Yann LeCun, 2010)

Handwritten Digit Recognition: LeNet-5

MNIST Error Rates

k-NN	l-layer NN	2-layer NN	SVM	LeNet-4	LeNet-5
5.0	12.0	4.7	1.4	1.1	0.95

Convolution Process

D

Convolution Operator

$$(I st K)_{xy} = \sum_{i=1}^h \sum_{j=1}^w K_{ij} \cdot I_{x+i-1,y+j-1}$$

Edge Detection Filter / Kernel

LeNet-5, AlexNet

LeNet-5, VGGNet

LeNet-5: "Handcrafted" Convolution

"Normal" Convolution

 $Y_i^{(l)} = B_i^{(l)} + \sum_{j=1}^{m_1^{(l-1)}} K_{i,j}^{(l)} st Y_j^{(l-1)}$

....

LeNet-5: "Handcrafted" vs. "Normal" Convolution

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	X				Х	Х	Х			Х	Х	Х	Χ		Х	Х	
1	X	Х				Х	Х	Х			Х	Х	Х	Х		Х	
2	X	Х	Х				Х	Х	Х			Х		Х	Х	Х	01,710
3		Х	Х	Х			Х	Х	Х	Х			Х		Х	Х	
4			Х	Х	Х			Х	Х	Х	Х		Х	Х		Х	parameters
5				Х	Х	Х			Х	Х	Х	Х		Х	Х	Х	-

$$Y_i^{(l)} = B_i^{(l)} + \sum_{j=1}^{m_1^{(l-1)}} K_{i,j}^{(l)} st Y_j^{(l-1)}$$

parameters

 $m_1^{(l-1)} = 6, m_1^l = 16, K = 5x5.$

LeNet-5: "Handcrafted" vs. "Normal" Convolution

5x5x6x16+

(2.400+) parameters

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Х	Х		Х	Х	Х	Х			Х	Х	Х				X	0
	Х		Х	Х	Х	Х			Х	Х	Х				Х	X	1
1,510	Х	Х	Х		Х			Х	Х	Х				Х	Х	X	2
Do ko mo oto ko	Х	Х		Х			Х	Х	Х	Х			Х	Х	Х		3
parameters	Х		Х	Х		Х	Х	Х	Х			Х	Х	Х			4
	Х	Х	Х		Х	Х	Х	Х			Х	Х	Х				5

$$Y_i^{(l)} = B_i^{(l)} + \sum_{j=1}^{m_1^{(l-1)}} K_{i,j}^{(l)} st Y_j^{(l-1)}$$

 $m_1^{(l-1)} = 6, m_1^l = 16, K = 5x5.$

31

LeNet-5, GoogLeNet

Convolution, Reception

Reception, Reception with Dimension Reduction

#Layers vs. Performance

MNIST Revisited

Gradient Feature

Filter mask

Feature $\mathbf{g}(x, y) = [g_x, g_y]^T$

$$g_x(x, y) = f(x+1, y-1) + 2f(x+1, y) + f(x+1, y+1)$$
$$- f(x-1, y-1) - 2f(x-1, y)$$
$$- f(x-1, y+1),$$

$$g_{y}(x, y) = f(x-1, y+1) + 2f(x, y+1) + f(x+1, y+1)$$

- f(x - 1, y - 1) - 2f(x, y - 1)
- f(x + 1, y - 1).

Gradient Feature: $[g_x, g_y]$

D

Gradient Feature: Magnitude and Angle

Gradient Feature: Discrete Direction

Discrete Direction: (Sum) Sampling

Discrete Direction: Concatenation

4x4x8 dimensions

MNIST Test Error Rate

HOG vs. LeNet-5

CNN Convolution vs. Filter

$$(I st K)_{xy} = \sum_{i=1}^h \sum_{j=1}^w K_{ij} \cdot I_{x+i-1,y+j-1}$$

-1	0	1
-2	0	2
-1	0	1

1	2	1
0	0	0
-1	-2	-1

Convolution

Filter

CNN Convolution vs. Filter

Stride and Padding

Pooling/Sampling

Example of Maxpool with a 2x2 filter and a stride of 2

Objective:

- Improve space-invariance
- Reduce parameters
- More abstract features

Methods:

- Max pooling
- Sum/Mean pooling

Non-linear Transform of Features

Convolution

Activation function

Nonlinearity: HOG vs. CNN

HOG: Linear Transform of Pixels

Figure 1. An illustration of the HOG feature extraction process and how each component maps to our reformulation. Gradient computation is achieved through convolution with a bank of oriented edge filters. The nonlinear transform is the pointwise squaring of the gradient responses which removes sensitivity to edge contrast and increases edge bandwidth. Histogramming can be expressed as blurring with a box filter followed by downsampling.

- x Input image
- \mathbf{g}_{f} Oriented edge filter
- \mathbf{b} Blur operator
- $\mathbf{D}-\mathbf{S}$ parse selection matrix for pooling/histogram

(Hilton Bristow and Simon Lucey,

Why do linear SVMs trained on HOG features perform so well?, 2014)

Nonlinearity

Why Deep?

Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014

PR: Feat Engineering vs. Feat. Learning

A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between HOG and CNN features for embedded vision," 2017.

"Deep" Feature Learning vs. "Shallow" Feature Engineering

A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between HOG and CNN features for embedded vision," 2017.

Performance: Feat. Learning vs. Feat. Engineering

A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between HOG and CNN features for embedded vision," 2017.

"Hand-Crafted" Feature Extraction

210 FIG. 2

Domain Specific Feature

Designed Architecture

Architecture Design: Speed

Simplification

Parallelization

Hand-design sub-network

Architecture Design: Accuracy

Multicolumn CNN for MNIST

- 10, 12, 14, 16, 18, 20 sizes normalization
- 5 DNN columns per normalization, total of 35 columns
- Ix29x29-20C4-MP2-40C5-MP3-I50N-I0N DNNs are trained

Performance

k-NN	2-layer NN	SVM RAW	LeNet-5	Mul.Col. DNN	SVM HOG
5.0	4.7	1.4	0.95	0.23	0.61

Multi-column Deep CNN for MNIST

Dan Cireşan, Ueli Meier, Juergen Schmidhuber, Multi-column Deep Neural Networks for Image Classification, 2012

Linear

Text detection

Character recognition

PLAYA CERRADA RECENTE ATAQUE DE TIBURON

Language translation

BEACH CLOSED RECENT ATTACK OF SHARK

Street address

Ground Truth – Word Recognition

Dataset Images			I	Ground Truth transcription	Ground Truth location (ONLY Challenge 4)	
word_1.png	word_2.png	word_3.png	word_4.png	<pre>word_1.png, "\$500" word_2.png, "who" word_3.png, "SMRT" word_4.png, "COACH" word_5.png, "FALL" word_6.png, "toast?" word_7.png, "SEASON!" word_8.png, "HUMP" word_9.png, "OUT" word_10.png "#04.11"</pre>	<pre>word_1.png,0,18,88,0,90,50,2,68 word_2.png,23,13,229,0,207,138,0,152 word_3.png,8,22,152,0,146,57,0,90 word_4.png,0,96,153,0,178,40,26,136 word_5.png,0,50,116,0,152,83,3,122 word_6.png,1,0,63,16,62,41,0,26 word_7.png,0,5,82,0,83,24,1,29 word_8.png,9,8,349,0,340,83,0,91 word_9.png,0,41,86,0,101,56,16,97 word_10_map.0,21,70,0,72,20,650</pre>	
word_8.png	V/TH	Word_9.png	#04-11 word_10.png	word_10.png, "NEW" word_11.png, "NEW" word_12.png, "PLAIN" word_13.png, "TOBACCO" 	word_11.png,0,4,91,0,91,28,0,32 word_11.png,0,4,91,0,91,28,0,32 word_12.png,0,90,41,0,72,6,27,96 word_13.png,0,0,100,24,105,39,4,15 	
word_11.png	W	rd_12.png	Word_13.png	gt.txt	coords.txt	

• **Interactive Handwritten Text Recognition:** the user and the system interact for obtaining the correct transcript.

be crited anopticon proposi to accommodate inten -victs, which the Panopticon proposed to be erected by

Tesseract OCR

Tesseract Word Recognition

Character Over-segmentation

OCR With Long-Short Term Memory

Recurrent Neuron Networks

move a pointing device to the location of the device to the location of the move a pointi p move a pointing device_to_the_location_of_the 40 60 80 100
Long-Short Term Memory

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

73

LSTM vs. Language Model?

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

"There is no one model that works best for every problem"

Reference

- Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in NIPS, 2012.
- A. Suleiman, Y. H. Chen, J. Emer and V. Sze, "Towards closing the energy gap between HOG and CNN features for embedded vision," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4.
- D. Ciregan, U. Meier and J. Schmidhuber, "Multi-column deep neural networks for image classification," 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, 2012, pp. 3642-3649.
- https://www.learnopencv.com/histogram-of-oriented-gradients/
- https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks
- A Beginner's Guide To Understanding Convolutional Neural Networks
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/

• • • •