Từ phương trình đường tròn: x2 + y2 = R2
Đặt F(x,y) = x2 + y2 - R2 ,ta có nhận xét:
< 0 nếu (x,y) ở trong đường tròn
F(x,y) = 0 nếu (x,y) ở trên đường tròn
> 0 nếu (x,y) ở ngoài đường tròn
Giả sử đã vẽ được điểm (xi,yi), điểm kế tiếp cần vẽ là P hoặc Q (Hình 1.6).
Gọi M là trung điểm của PQ ÞM(xi + 1,yi - ). Lúc này, việc chọn các điểm P hay Q được đưa về việc xét dấu của:
pi = F(M) = F(xi + 1,yi - )
Ø Nếu pi < 0: M ở trong đường tròn Þđường tròn gần P hơn ÞChọn P.
Ø Ngược lại: Chọn Q.
Tương tự:
pi+1 = F(xi+1 + 1,yi+1 - )
Suy ra:
pi+1 - pi = F(xi+1 + 1,yi+1 - ) - F(xi + 1,yi - )
= [(xi+1+1)2 + (yi+1 - )2 - R2] - [(xi+1)2 + (yi - )2 - R2]
= [(xi+2)2 + (yi+1 - )2 - R2] - [(xi+1)2 + (yi - )2 - R2]
= 2xi + 3 + (yi+12 - yi2) - (yi+1 - yi)
hay
pi+1 = pi + 2xi + 3 + (yi+12 - yi2) - (yi+1 - yi) (*)
*Nhận xét:
Nếu pi < 0: Chọn điểm P hay chọn yi+1 = yi.
Từ (*) Þpi+1 = pi + 2xi + 3
Nếu pi ³0: Chọn điểm Q hay chọn yi+1 = yi - 1.
Từ (*) Þpi+1 = pi + 2(xi - yi) + 5
Với điểm đầu tiên (0,R), ta có:
p1 = F(x1 + 1,y1 - ) = F(1,R - ) = 1 + (R - )2 - R2
p1 = 1 - R
» Tin mới nhất:
» Các tin khác: