Các hệ đa cấp kế thừa thì phổ biến trong nhiều lĩnh vực. Những ngôn ngữ lập trình hướng đối tượng như C++, Java và Smalltalk cho phép định nghĩa các lớp mà các lớp được tổ chức thành những hệ đa cấp kế thừa. Những đề nghị dữ liệu gần đây cho phép định nghĩa bằng giản đồ dựa trên những đối tượng phức tạp, và 1 vài đòi hỏi phép tính lưới để suy ra các lọai đối tượng. Mối quan hệ kế thừa cũng xuất hiện trong việc truy vấn dữ liệu, và việc kết hợp này thường xuyên được sử dụng trong việc quản lý các quan niệm. Cuối cùng, những hệ thống đại diện cho tri thức cho phép các khái niệm được tổ chức thành các hệ đa cấp phân lớp, với việc thừa kế là thành phần khóa của thuật tóan lập luận
Những hệ thống cho phép các hệ đa cấp kế thừa tổ chức đối tượng , mà các đối tượng là ví dụ của các lớp trong các kiểu thành phần, điều này có thể được mô hình hóa như là lưới. Thao tác đối tượng thì được vận hành bằng phép tính lưới GLB và LUB, đại diện cho sự kết hợp và sự phân rã của các lọai đối tượng. Một tóan tử khóa trong hệ thống này có thể thực hành kiểm tra thử sự kết hợp, đó là quyết định xem có tồn tại một mối quan hệ kế thừa giữa cặp đối tượng trên lý thuyết hay không. Phần 2 sẽ cung cấp tài liệu cơ bản và định nghĩa cần thiết để hiểu những vấn đề này
Một vài phương pháp đã được đề nghị trong việc mã hóa lưới để ủng hộ phép các phép tính lưới theo thời gian không đổi. Phần này sẽ được nhắc lại ở phần 3, cùng với việc phân tích giới hạn và lợi ích mối quan hệ của chúng. Sự phát triển của các ứng dụng lâu năm tận dụng các hệ đa cấp kế thừa, như là cơ sở tri thức và cơ sở dữ liệu
Một hệ đa cấp kế thừa có thể được miêu tả như 1 bộ trật tự cục bộ, poset (P, ≤), mối quan hệ nhị phân ≤ , mối quan hệ phan xạ, phản đối xứng, và transitive. Mối quan hệ a ≤ b ngụ ý hoặc a và b cùng lớp, hoặc a là con trực tiếp của b, hoặc a là con trực tiếp của 1 vài lớp c, và c ≤ b. Hai phần tử a và b của poset P được cho rằng có thể so sánh được nếu a ≤ b hoặc b ≤ a
Xem xét 1 poset (P, ≤), và 1 bộ con A của P. Phần tử bP đđược gọi là ràng buộc ở trên của A nếu a ≤ b đối với tất cả aA. Ngòai ra b được gọi là ràng buộc trên nhỏ nhất (LUB) của A nếu nó cũng là 1 trường hợp của b ≤ a bất cứ khi nào a cũng là ràng buộc trên của A. Ngược lại, phần tử bP đđược gọi là ràng buộc dưới của A nếu b ≤ a đối với tất cả aA, và ràng buộc dưới lớn nhất (GLB) của A nếu nó cũng là trường hợp của a ≤ b bất cứ khi nào a cũng là ràng buộc dưới của A.
Một lattice là 1 poset mà bất cứ mỗi cặp phần tử đều có LUB và GLB. LUB của bộ hai phần tử {a,b} có nghĩa là a b và được gọi là hợp của a và b. Tương tự, GLB của {a,b} có nghĩa là ab và được gọi là giao của a và b. Một semilattice thấp hơn là 1 poset mà bất cứ mỗi cặp phần tử đều có GLB. Một sự thảo luận chi tiết hơn về poset và lattice có thể được tìm thấy những chủ đề chuẩn trong môn tóan riêng biệt ví dụ như [4]
Nói chung, 1 hệ đa cấp kế thừa không có cấu trúc lattice; đó là hợp và giao của mỗi cặp phần tử không thể định nghĩa. Trong những trường hợp như thế, GLB và LUB của 1 bộ phần tử không thể định nghĩa được. Để phân biệt những trường hợp này, các từ GCS và LCS được sử dụng và được định nghĩa như sau.
Trong poset (P, ≤) của 1 hệ đa cấp kế thừa, siêu lớp chung nhỏ nhất (LCS) của subset A của P là bộ nhỏ nhất của các phần tử B như là có sự tồn tại b B điều kiện b ≤ a, đối với mỗi phần tử a là 1 ràng buộc trên của A . Ngược lại, siêu lớp chung lớn nhất (GCS) của subset A của P là bộ nhỏ nhất củ phần tử B như là có sự tồn tại b B điều kiện a ≤ b, đối với mỗi phần tử a là ràng buộc dưới của của A.
Được đưa ra 1 poset (P,), đó là 1 lattice và 1 poset lattice nữa (L, ), đối với GLB và LUB có thể được tính tóan 1 cách hiệu quả, giả định rằng có tồn tại 1 hàm số từ P đến L như thế, đối với 2 phần tử a và b trong P ,
(ab) = (a)(b),
(ab) = (a)(b),
Đó là, là 1 đồng dạng lattice. Ngòai ra, cho rằng có thể đảo ngược; đó là, có tồn tại 1 hàm số -1 từ L đến P như thế, đối với bất kỳ a trong P ,-1((a)) = a.Sau đó, một cách tính tóan GLB và LUB của 2 phần tử a và b trong P là nối những mệnh đề bằng nhau, đưa ra
ab = -1((a) (b)),
ab = -1((a) (b)).
Đối với poset (P, ≤) đó không phải là 1 lattice, nó vẫn có thể sử dụng sự gắn vào lattice, nhưng đối với các phép tính phức tạp hơn nữa. Trước tiên, các phép tóan trần và sàn phải được định nghĩa.
Đối với subset A của P , trần của A được kí hiệu là subset B nhỏ nhất của A điều kiện tất cả a A, ở đó tồn tại a bB , khi a ≤ b. Sàn của A được kí hiệu là subset C nhỏ nhất của A điều kiện tất cả a A, ở đó tồn tại a cB , khi c ≤ a.
Bây giờ đối với định nghĩa phép tóan GCS và LCS. Đối với 1 poset (P, ≤) và 1 subset A = {a1, …,ak}của P , GCS có thể được tính tóan như sau:
GCS(A) =
Cách khác, GCS là phần tử lớn nhất của poset mà mã của nó ít hơn mã của GLB của phần tử tương ứng trong semilattice gắn vào. Tương tự, LCS cũng được tính tóan như sau:
LCS(A) =
Xem xét poset (P, ≤). Để Anc(x) = { y P |y < x} và Desc(x) = { y P |y > x}. Một phần tử jX được nói là giao không thể tối giản nếu tồn tại xX chẳng hạn xDesc(j) và Anc(j) Anc(x) {x}. Tương tự, chúng ta có thể xác định hội không thể tối giản. Để J(P) biểu hiện rõ những phần của tất cả các yếu tố giao không thể tối giản và M(P) biểu hiện rõ những phần tất cả các yếu tố hợp không thể tối giản được. Markowsky [5] chỉ ra rằng mã hóa tối ưu chỉ dành cho những tóan tử giao (hội) đối với một lưới là những cái đó đạt được bằng liên kết số hay bit khác nhau đến mỗi yếu tố giao không thể tối giản (hội không thể tối giản)
Để (P, ≤) là một poset, và . Habib et al. [6] cung cấp những định nghĩa sau. Một mã hóa đơn giản là sự sắp xếp S với như là là một kết hợp từ P lên trên 2S ; đó là, x py iff . Sau đó vấn đề là quyết định sự thỏa thuận tốt nhất như là mã hóa. Thật không may mắn, Caseau et al. [7] chứng tỏ rằng mã hóa đơn giản là cân bằng đa thức đến vẽ đồ thị màu và lần lượt, nó là một vấn đề NP-hard. Thật vậy, vấn đề mã hóa thường (cũng được biết như vấn đề hai chiều) thì tìm thấy số k nhỏ nhất như là tồn tại một sự sắp xếp {1,…,k} như S với là một kết hợp từ P lên trên 2S ; đó là, x py iff . Rõ ràng, đây cũng là một vấn đề NP-hard.
» Tin mới nhất:
» Các tin khác: