Học sâu là một chi của ngành máy học dựa trên một tập hợp các thuật toán để cố gắng để mô hình dữ liệu trừu tượng hóa ở mức cao bằng cách sử dụng nhiều lớp xử lý với cấu trúc phức tạp, hoặc bằng cách khác bao gồm nhiều biến đổi phi tuyến.
Học sâu là một phần của một họ các phương pháp học máy rộng hơn dựa trên đại diện học của dữ liệu. Một quan sát (ví dụ như, một hình ảnh) có thể được biểu diễn bằng nhiều cách như một vector của các giá trị cường độ cho mỗi điểm ảnh, hoặc một cách trừu tượng hơn như là một tập hợp các cạnh, các khu vực hình dạng cụ thể, vv. Một vài đại diện làm khiến việc học các nhiệm vụ dễ dàng hơn (ví dụ, nhận dạng khuôn mặt hoặc biểu hiện cảm xúc trên khuân mặt) từ các ví dụ. Một trong những hứa hẹn của học sâu là thay thế các tính năng thủ công bằng các thuật toán hiệu quả đối với học không có giám sát hoặc nửa giám sát và tính năng phân cấp.
Các nghiên cứu trong lĩnh vực này cố gắng thực hiện các đại diện tốt hơn và tạo ra các mô hình để tìm hiểu các đại diện này từ dữ liệu quy không dán nhãn mô lớn. Một số đại diện được lấy cảm hứng bởi những tiến bộ trong khoa học thần kinh và được dựa trên các giải thích của mô hình xử lý và truyền thông thông tin trong một hệ thống thần kinh, chẳng hạn như mã hóa thần kinh để cố gắng để xác định các mối quan hệ giữa các kích thích khác nhau và các phản ứng liên quan đến thần kinh trong não.
Nhiều kiến trúc học sâu khác nhau như mạng nơ-ron sâu, mã mạng nơ-ron tích chập sâu, mạng niềm tin sâu và mạng nơron tái phát đã được áp dụng cho các lĩnh vực như thị giác máy tính, tự động nhận dạng giọng nói, xử lý ngôn ngữ tự nhiên, nhận dạng âm thanh ngôn ngữ và tin sinh học, chúng đã được chứng minh là tạo ra các kết quả rất tốt đối với nhiều nhiệm vụ khác nhau.
» Danh sách Tập tin đính kèm:
» Tin mới nhất:
» Các tin khác: